Mutavdžić, Dragosav

Link to this page

Authority KeyName Variants
f0255133-601a-4cf8-9374-dd8131773b89
  • Mutavdžić, Dragosav (1)
  • Mutavdžić, Dragosav R. (1)
Projects

Author's Bibliography

Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for potential biomedical application

Milojkov, Dušan; Marković, Gordana; Sokić, Miroslav; Manojlović, Vaso; Mutavdžić, Dragosav; Janjić, Goran

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Milojkov, Dušan
AU  - Marković, Gordana
AU  - Sokić, Miroslav
AU  - Manojlović, Vaso
AU  - Mutavdžić, Dragosav
AU  - Janjić, Goran
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7341
AB  - Fluorapatite (FAP) crystals have drawn significant interest over the last few decades as important hosts matrix for optically active trivalent rare earth ions, due to the strong crystal field splitting and large transition cross-sections. Nano-sized FAP particles doped with rare earth ions have been extensively studied as luminescent materials for biomedical applications for cell labeling and bioimaging, as well as antimicrobial agents for therapeutics.Fluorapatite nanoparticles doped with praseodymium ions (Pr3+) were prepared by the co precipitation method and characterized. The different number of Pr3+ (4f2) transitions in the ultraviolet and visible parts of the spectrum was investigated by photoluminescence spectroscopy. Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) analyses of fluorescence spectra and ab initio calculation indicated that Pr3+ ions are preferentially substituted Ca2 (6h) sites in FAP lattice. In addition to the substitution of cations, there is also the substitution of anionic species such as OH-, CO32-, and NO3-, which are confirmed by the CHNS method. The obtained samples were tested as bioimaging and antibacterial agents and can potentially be used for further biomedical research.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts, The Eleventh Serbian Ceramic Society Conference Advanced Ceramics and Application, September 18-20, 2023
T1  - Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for  potential biomedical application
SP  - 38
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_cer_7341
ER  - 
@conference{
author = "Milojkov, Dušan and Marković, Gordana and Sokić, Miroslav and Manojlović, Vaso and Mutavdžić, Dragosav and Janjić, Goran",
year = "2023",
abstract = "Fluorapatite (FAP) crystals have drawn significant interest over the last few decades as important hosts matrix for optically active trivalent rare earth ions, due to the strong crystal field splitting and large transition cross-sections. Nano-sized FAP particles doped with rare earth ions have been extensively studied as luminescent materials for biomedical applications for cell labeling and bioimaging, as well as antimicrobial agents for therapeutics.Fluorapatite nanoparticles doped with praseodymium ions (Pr3+) were prepared by the co precipitation method and characterized. The different number of Pr3+ (4f2) transitions in the ultraviolet and visible parts of the spectrum was investigated by photoluminescence spectroscopy. Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) analyses of fluorescence spectra and ab initio calculation indicated that Pr3+ ions are preferentially substituted Ca2 (6h) sites in FAP lattice. In addition to the substitution of cations, there is also the substitution of anionic species such as OH-, CO32-, and NO3-, which are confirmed by the CHNS method. The obtained samples were tested as bioimaging and antibacterial agents and can potentially be used for further biomedical research.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts, The Eleventh Serbian Ceramic Society Conference Advanced Ceramics and Application, September 18-20, 2023",
title = "Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for  potential biomedical application",
pages = "38-39",
url = "https://hdl.handle.net/21.15107/rcub_cer_7341"
}
Milojkov, D., Marković, G., Sokić, M., Manojlović, V., Mutavdžić, D.,& Janjić, G.. (2023). Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for  potential biomedical application. in Program and the Book of Abstracts, The Eleventh Serbian Ceramic Society Conference Advanced Ceramics and Application, September 18-20, 2023
Belgrade : Serbian Ceramic Society., 38-39.
https://hdl.handle.net/21.15107/rcub_cer_7341
Milojkov D, Marković G, Sokić M, Manojlović V, Mutavdžić D, Janjić G. Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for  potential biomedical application. in Program and the Book of Abstracts, The Eleventh Serbian Ceramic Society Conference Advanced Ceramics and Application, September 18-20, 2023. 2023;:38-39.
https://hdl.handle.net/21.15107/rcub_cer_7341 .
Milojkov, Dušan, Marković, Gordana, Sokić, Miroslav, Manojlović, Vaso, Mutavdžić, Dragosav, Janjić, Goran, "Luminescence transitions of Pr3+ (4f2) in fluorapatite nanocrystals for  potential biomedical application" in Program and the Book of Abstracts, The Eleventh Serbian Ceramic Society Conference Advanced Ceramics and Application, September 18-20, 2023 (2023):38-39,
https://hdl.handle.net/21.15107/rcub_cer_7341 .

Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions

Milojkov, Dušan V.; Sokić, Miroslav D.; Živković-Radovanović, Vukosava; Manojlović, Vaso D.; Mutavdžić, Dragosav R.; Janjić, Goran; Radotić, Ksenija

(Springer, 2023)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Sokić, Miroslav D.
AU  - Živković-Radovanović, Vukosava
AU  - Manojlović, Vaso D.
AU  - Mutavdžić, Dragosav R.
AU  - Janjić, Goran
AU  - Radotić, Ksenija
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5804
AB  - In this study, luminescence and antibacterial behavior of pure fluorapatite (FAp) and praseodymium-nitrate-carbonate co-doped fluorapatite (PrNCFAp) nanopowders were investigated. Uniform nanopowders were synthesized by precipitation reaction followed by centrifugation and systematically characterized by XRD, FTIR, SEM–EDS, TG and PL methods. XRD analysis revealed the formation of hexagonal FAp crystals, and FTIR spectra indicate the presence of nitrate (NO3−) and carbonate (CO32−) species. SEM analyzes confirm agglomerates composed of irregular nanometer-sized spheres. Emission of FAp nanopowder occurred in the violet-blue region of the visible part of the spectrum, with redshift to the blue-green color region when Pr3+, NO3− and CO32− co-doped in the lattice. Analysis of luminescence spectra by MCR-ALS method extract three fluorophores from the PrNCFAp sample and showed simultaneous existents of emission-reabsorption-emission between dopants in FAp lattice. Antibacterial activity against pathogen Staphylococcus aureus was investigated before and after treatment of nanopowders by UVA radiation of 365 nm. Nanopowders irradiated with UVA compared to non-irradiated reduced Staphylococcus aureus by 84.9% for PrNCFAp and 33.3% for FAp in the first 0.5 h of contact, and 76.1% and 42.9% after 24 h of contact. In addition, the obtained luminescent nanomaterials showed a low degree of hemolytic activity and could potentially be candidates for further research in dentistry.
PB  - Springer
T2  - Optical and Quantum Electronics
T1  - Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions
VL  - 55
IS  - 1
SP  - 84
DO  - 10.1007/s11082-022-04347-7
ER  - 
@article{
author = "Milojkov, Dušan V. and Sokić, Miroslav D. and Živković-Radovanović, Vukosava and Manojlović, Vaso D. and Mutavdžić, Dragosav R. and Janjić, Goran and Radotić, Ksenija",
year = "2023",
abstract = "In this study, luminescence and antibacterial behavior of pure fluorapatite (FAp) and praseodymium-nitrate-carbonate co-doped fluorapatite (PrNCFAp) nanopowders were investigated. Uniform nanopowders were synthesized by precipitation reaction followed by centrifugation and systematically characterized by XRD, FTIR, SEM–EDS, TG and PL methods. XRD analysis revealed the formation of hexagonal FAp crystals, and FTIR spectra indicate the presence of nitrate (NO3−) and carbonate (CO32−) species. SEM analyzes confirm agglomerates composed of irregular nanometer-sized spheres. Emission of FAp nanopowder occurred in the violet-blue region of the visible part of the spectrum, with redshift to the blue-green color region when Pr3+, NO3− and CO32− co-doped in the lattice. Analysis of luminescence spectra by MCR-ALS method extract three fluorophores from the PrNCFAp sample and showed simultaneous existents of emission-reabsorption-emission between dopants in FAp lattice. Antibacterial activity against pathogen Staphylococcus aureus was investigated before and after treatment of nanopowders by UVA radiation of 365 nm. Nanopowders irradiated with UVA compared to non-irradiated reduced Staphylococcus aureus by 84.9% for PrNCFAp and 33.3% for FAp in the first 0.5 h of contact, and 76.1% and 42.9% after 24 h of contact. In addition, the obtained luminescent nanomaterials showed a low degree of hemolytic activity and could potentially be candidates for further research in dentistry.",
publisher = "Springer",
journal = "Optical and Quantum Electronics",
title = "Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions",
volume = "55",
number = "1",
pages = "84",
doi = "10.1007/s11082-022-04347-7"
}
Milojkov, D. V., Sokić, M. D., Živković-Radovanović, V., Manojlović, V. D., Mutavdžić, D. R., Janjić, G.,& Radotić, K.. (2023). Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions. in Optical and Quantum Electronics
Springer., 55(1), 84.
https://doi.org/10.1007/s11082-022-04347-7
Milojkov DV, Sokić MD, Živković-Radovanović V, Manojlović VD, Mutavdžić DR, Janjić G, Radotić K. Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions. in Optical and Quantum Electronics. 2023;55(1):84.
doi:10.1007/s11082-022-04347-7 .
Milojkov, Dušan V., Sokić, Miroslav D., Živković-Radovanović, Vukosava, Manojlović, Vaso D., Mutavdžić, Dragosav R., Janjić, Goran, Radotić, Ksenija, "Cascade luminescence and antibacterial behavior of fluorapatite nanopowder co-doped with Pr3+, NO3− and CO32− ions" in Optical and Quantum Electronics, 55, no. 1 (2023):84,
https://doi.org/10.1007/s11082-022-04347-7 . .
1