Yao, Jun

Link to this page

Authority KeyName Variants
36122325-204e-48e9-91d0-d90adab431bd
  • Yao, Jun (21)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) 111 Project (B21017)
The 111 Project (B21017) The International Joint Scientific and Technical Collaboration between the People’s Republic of China and the Republic of Serbia as part of the Project Number 4-18
Geochemical investigations of sedimentary rocks - fossil fuels and environmental pollutants The Major National R & D Projects for Chinese Ministry of Science and Technology (2019YFC1803500)
The National Science Foundation of China (41720104007) Centre National de la Recherche ScientifiqueCentre National de la Recherche Scientifique : PRC1416
China University of Geosciences, Beijing (ZD2021YC027) China University of Geosciences, Beijing ( ZD2021YC045 )
Chinese Ministry of Environmental Protection: 201509049 Fundamental Research Funds for the Central Universities: FRF-OT-16-025
Grants from the National Natural Science Foundation of China (41430106, 41720104007, 41573080, 41711530030, 41711530150) Higher Education Discipline Innovation Project ( B21017 )
Major National R & D Projects for Chinese Ministry of Science and Technology (2019YFC1803500) Ministry of Science and Technology of China: S2016G2135
National Natural Science Foundation International Joint collaboration China-Sweden : 41430106 National Natural Science Foundation of China (41720104007)
National Natural Science Foundation of China: 41720104007 National Natural Science Foundation of China (42230716)
Natural Science Foundation of China: 41573080 Natural Science Foundation of China: 41711530030
Natural Science Foundation of China: 41711530150 Natural Science Foundation of China: 41711530224
Natural Science Foundation of China: U1402234 Project of the Ministry of Science and Technology of China (S2016G2135)
Royal Society Newton Mobility : IE161198 The Graduate Innovation Fund Project of China University of Geosciences, Beijing (YB2021YC016).
The Major National R & D Projects for Chinese Ministry of Science and Technology, Grant (2019YFC1803500) The National Natural Science Foundation of China (41720104007)

Author's Bibliography

Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants

Ma, Bo; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Liu, Bang; Zhu, Xiaozhe; Cao, Ying; Zhao, Chenchen

(Elsevier, 2023)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Liu, Bang
AU  - Zhu, Xiaozhe
AU  - Cao, Ying
AU  - Zhao, Chenchen
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6880
AB  - The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions,
leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for pchloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
PB  - Elsevier
T2  - Journal of Hazardous Materials
T1  - Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants
VL  - 457
SP  - 131797
DO  - 10.1016/j.jhazmat.2023.131797
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Liu, Bang and Zhu, Xiaozhe and Cao, Ying and Zhao, Chenchen",
year = "2023",
abstract = "The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions,
leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for pchloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.",
publisher = "Elsevier",
journal = "Journal of Hazardous Materials",
title = "Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants",
volume = "457",
pages = "131797",
doi = "10.1016/j.jhazmat.2023.131797"
}
Ma, B., Yao, J., Šolević Knudsen, T., Pang, W., Liu, B., Zhu, X., Cao, Y.,& Zhao, C.. (2023). Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. in Journal of Hazardous Materials
Elsevier., 457, 131797.
https://doi.org/10.1016/j.jhazmat.2023.131797
Ma B, Yao J, Šolević Knudsen T, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. in Journal of Hazardous Materials. 2023;457:131797.
doi:10.1016/j.jhazmat.2023.131797 .
Ma, Bo, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Liu, Bang, Zhu, Xiaozhe, Cao, Ying, Zhao, Chenchen, "Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants" in Journal of Hazardous Materials, 457 (2023):131797,
https://doi.org/10.1016/j.jhazmat.2023.131797 . .
2
2

Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants

Cao, Ying; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Ma, Bo; Li, Hao; Zhao, Chenchen; Liu, Bang; Li, Miaomiao

(Elsevier, 2023)

TY  - JOUR
AU  - Cao, Ying
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Ma, Bo
AU  - Li, Hao
AU  - Zhao, Chenchen
AU  - Liu, Bang
AU  - Li, Miaomiao
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6879
AB  - The growing problem of typical organic pollution in mines, and the effective utilization of increasing mine industrial wastes have been the most challenging issues in the current global situation. In this study, copper smelting slag (CSS), hydroxylamine (HA) and H2O2 were employed to construct an efficient surface heterogeneous catalyst for the degradation of organic pollutants in mines. Fayalite and its ≡Fe were proved, by multiple methods, to be the crucial ferriferous catalyst in the CSS. HA greatly increased the oxidation effectiveness of the CSS from 53.6% to ~100% by regulating the Fe2+/Fe3+ circulation within the fayalite lattice. Due to the special structural configuration of iron atoms in fayalite, the surface generation rate of •OH catalyzed by CSS was 101-106 times higher than in other iron-bearing minerals. •OH was demonstrated to be the main active radical species, and as an intermediate, O2•- also had a role in the oxidation process. In the presence of low doses of Cr, a synergistic removal of organic pollutants occurred, dominated by the electron transfer. Accordingly, this study proposes both, a new design concept for recycling the industrial solid waste from mines and a new surface catalyst system for the removal of organic pollutants from mining.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants
VL  - 425
SP  - 138649
DO  - 10.1016/j.jclepro.2023.138649
ER  - 
@article{
author = "Cao, Ying and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Ma, Bo and Li, Hao and Zhao, Chenchen and Liu, Bang and Li, Miaomiao",
year = "2023",
abstract = "The growing problem of typical organic pollution in mines, and the effective utilization of increasing mine industrial wastes have been the most challenging issues in the current global situation. In this study, copper smelting slag (CSS), hydroxylamine (HA) and H2O2 were employed to construct an efficient surface heterogeneous catalyst for the degradation of organic pollutants in mines. Fayalite and its ≡Fe were proved, by multiple methods, to be the crucial ferriferous catalyst in the CSS. HA greatly increased the oxidation effectiveness of the CSS from 53.6% to ~100% by regulating the Fe2+/Fe3+ circulation within the fayalite lattice. Due to the special structural configuration of iron atoms in fayalite, the surface generation rate of •OH catalyzed by CSS was 101-106 times higher than in other iron-bearing minerals. •OH was demonstrated to be the main active radical species, and as an intermediate, O2•- also had a role in the oxidation process. In the presence of low doses of Cr, a synergistic removal of organic pollutants occurred, dominated by the electron transfer. Accordingly, this study proposes both, a new design concept for recycling the industrial solid waste from mines and a new surface catalyst system for the removal of organic pollutants from mining.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants",
volume = "425",
pages = "138649",
doi = "10.1016/j.jclepro.2023.138649"
}
Cao, Y., Yao, J., Šolević Knudsen, T., Pang, W., Ma, B., Li, H., Zhao, C., Liu, B.,& Li, M.. (2023). Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants. in Journal of Cleaner Production
Elsevier., 425, 138649.
https://doi.org/10.1016/j.jclepro.2023.138649
Cao Y, Yao J, Šolević Knudsen T, Pang W, Ma B, Li H, Zhao C, Liu B, Li M. Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants. in Journal of Cleaner Production. 2023;425:138649.
doi:10.1016/j.jclepro.2023.138649 .
Cao, Ying, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Ma, Bo, Li, Hao, Zhao, Chenchen, Liu, Bang, Li, Miaomiao, "Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants" in Journal of Cleaner Production, 425 (2023):138649,
https://doi.org/10.1016/j.jclepro.2023.138649 . .
2
2

Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil

Zhao, Chenchen; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhu, Xiaozhe; Ma, Bo; Li, Hao; Cao, Ying; Liu, Bang

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Zhao, Chenchen
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhu, Xiaozhe
AU  - Ma, Bo
AU  - Li, Hao
AU  - Cao, Ying
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5646
AB  - A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic
cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that
goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional
groups (such as Fe–O, and Fe–OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of
0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58
mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III)
showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface
complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive
adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable
because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the
amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that
GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution
and mine soil.
PB  - Elsevier B.V.
T2  - Journal of Environmental Management
T1  - Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil
VL  - 330
SP  - 117163
DO  - 10.1016/j.jenvman.2022.117163
ER  - 
@article{
author = "Zhao, Chenchen and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhu, Xiaozhe and Ma, Bo and Li, Hao and Cao, Ying and Liu, Bang",
year = "2023",
abstract = "A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic
cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that
goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional
groups (such as Fe–O, and Fe–OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of
0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58
mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III)
showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface
complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive
adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable
because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the
amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that
GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution
and mine soil.",
publisher = "Elsevier B.V.",
journal = "Journal of Environmental Management",
title = "Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil",
volume = "330",
pages = "117163",
doi = "10.1016/j.jenvman.2022.117163"
}
Zhao, C., Yao, J., Šolević Knudsen, T., Liu, J., Zhu, X., Ma, B., Li, H., Cao, Y.,& Liu, B.. (2023). Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. in Journal of Environmental Management
Elsevier B.V.., 330, 117163.
https://doi.org/10.1016/j.jenvman.2022.117163
Zhao C, Yao J, Šolević Knudsen T, Liu J, Zhu X, Ma B, Li H, Cao Y, Liu B. Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. in Journal of Environmental Management. 2023;330:117163.
doi:10.1016/j.jenvman.2022.117163 .
Zhao, Chenchen, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhu, Xiaozhe, Ma, Bo, Li, Hao, Cao, Ying, Liu, Bang, "Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil" in Journal of Environmental Management, 330 (2023):117163,
https://doi.org/10.1016/j.jenvman.2022.117163 . .
8
8

Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2

Cao, Ying; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Zhu, Junjie; Liu, Bang; Li, Hao; Li, Miaomiao; Su, Jianchao

(Elsevier BV, 2023)

TY  - JOUR
AU  - Cao, Ying
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Zhu, Junjie
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Su, Jianchao
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5580
AB  - UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6–8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.
PB  - Elsevier BV
T2  - Chemosphere
T1  - Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2
VL  - 312
SP  - 137169
DO  - 10.1016/j.chemosphere.2022.137169
ER  - 
@article{
author = "Cao, Ying and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Zhu, Junjie and Liu, Bang and Li, Hao and Li, Miaomiao and Su, Jianchao",
year = "2023",
abstract = "UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6–8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.",
publisher = "Elsevier BV",
journal = "Chemosphere",
title = "Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2",
volume = "312",
pages = "137169",
doi = "10.1016/j.chemosphere.2022.137169"
}
Cao, Y., Yao, J., Šolević Knudsen, T., Pang, W., Zhu, J., Liu, B., Li, H., Li, M.,& Su, J.. (2023). Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2. in Chemosphere
Elsevier BV., 312, 137169.
https://doi.org/10.1016/j.chemosphere.2022.137169
Cao Y, Yao J, Šolević Knudsen T, Pang W, Zhu J, Liu B, Li H, Li M, Su J. Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2. in Chemosphere. 2023;312:137169.
doi:10.1016/j.chemosphere.2022.137169 .
Cao, Ying, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Zhu, Junjie, Liu, Bang, Li, Hao, Li, Miaomiao, Su, Jianchao, "Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2" in Chemosphere, 312 (2023):137169,
https://doi.org/10.1016/j.chemosphere.2022.137169 . .
13
12

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5331
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14

Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)

Ma, Bo; Yao, Jun; Šolević Knudsen, Tatjana; Chen, Zhihui; Pang, Wancheng; Liu, Bang; Cao, Ying; Zhu, Xiaozhe; Zhao, Chenchen

(Elsevier, 2023)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Chen, Zhihui
AU  - Pang, Wancheng
AU  - Liu, Bang
AU  - Cao, Ying
AU  - Zhu, Xiaozhe
AU  - Zhao, Chenchen
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5369
AB  - In this study, efficient simultaneous elimination of typical mine pollutants benzotriazole (BTA) and Cr(VI) was achieved by using a copper slag (CS) activated peroxodisulfate (PDS) Fenton system, with WS2 as a co-catalyst. The combined use of these two mine-sourced materials enables excellent pollution removal efficiency. CS can continuously release ferrous ions for the advanced oxidation processes (AOPs), while WS2 as a co-catalyst has key roles in acceleration of the rate-limiting step of Fe3+/Fe2+ conversion and prevention of Fe3+ precipitation. In this process, Fe3+/Fe2+ conversion primarily occurs on the surface of WS2, whereas PDS decomposition and BTA degradation are dominated by homogeneous Fenton reactions. Dissolved Fe2+ has a main role in the activation of PDS and generation of ROS. The contributions of free radicals, singlet oxygen and Fe(IV) in BTA degradation were carefully evaluated. Fe(IV) was identified as the major ROS responsible for degradation of BTA in the CS/WS2/PDS system. This was further confirmed by the Raman spectra and the detection of BTA degradation products formed by the transfer of oxygen atoms. Kinetics calculation showed that Fe(IV) was responsible for 63.4 % of the degradation of BTA. More importantly, water matrix had a low impact on the degradation of BTA due to the high selectivity of Fe(IV). This study provides a new strategy for a cost-effective and efficient decontamination of the environment in mining areas.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)
VL  - 451
IS  - 3
SP  - 138888
DO  - 10.1016/j.cej.2022.138888
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Šolević Knudsen, Tatjana and Chen, Zhihui and Pang, Wancheng and Liu, Bang and Cao, Ying and Zhu, Xiaozhe and Zhao, Chenchen",
year = "2023",
abstract = "In this study, efficient simultaneous elimination of typical mine pollutants benzotriazole (BTA) and Cr(VI) was achieved by using a copper slag (CS) activated peroxodisulfate (PDS) Fenton system, with WS2 as a co-catalyst. The combined use of these two mine-sourced materials enables excellent pollution removal efficiency. CS can continuously release ferrous ions for the advanced oxidation processes (AOPs), while WS2 as a co-catalyst has key roles in acceleration of the rate-limiting step of Fe3+/Fe2+ conversion and prevention of Fe3+ precipitation. In this process, Fe3+/Fe2+ conversion primarily occurs on the surface of WS2, whereas PDS decomposition and BTA degradation are dominated by homogeneous Fenton reactions. Dissolved Fe2+ has a main role in the activation of PDS and generation of ROS. The contributions of free radicals, singlet oxygen and Fe(IV) in BTA degradation were carefully evaluated. Fe(IV) was identified as the major ROS responsible for degradation of BTA in the CS/WS2/PDS system. This was further confirmed by the Raman spectra and the detection of BTA degradation products formed by the transfer of oxygen atoms. Kinetics calculation showed that Fe(IV) was responsible for 63.4 % of the degradation of BTA. More importantly, water matrix had a low impact on the degradation of BTA due to the high selectivity of Fe(IV). This study provides a new strategy for a cost-effective and efficient decontamination of the environment in mining areas.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)",
volume = "451",
number = "3",
pages = "138888",
doi = "10.1016/j.cej.2022.138888"
}
Ma, B., Yao, J., Šolević Knudsen, T., Chen, Z., Pang, W., Liu, B., Cao, Y., Zhu, X.,& Zhao, C.. (2023). Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI). in Chemical Engineering Journal
Elsevier., 451(3), 138888.
https://doi.org/10.1016/j.cej.2022.138888
Ma B, Yao J, Šolević Knudsen T, Chen Z, Pang W, Liu B, Cao Y, Zhu X, Zhao C. Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI). in Chemical Engineering Journal. 2023;451(3):138888.
doi:10.1016/j.cej.2022.138888 .
Ma, Bo, Yao, Jun, Šolević Knudsen, Tatjana, Chen, Zhihui, Pang, Wancheng, Liu, Bang, Cao, Ying, Zhu, Xiaozhe, Zhao, Chenchen, "Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)" in Chemical Engineering Journal, 451, no. 3 (2023):138888,
https://doi.org/10.1016/j.cej.2022.138888 . .
13
12

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5403
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
10

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5509
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
8

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5546
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14

Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)

Ma, Bo; Yao, Jun; Šolević Knudsen, Tatjana; Chen, Zhihui; Pang, Wancheng; Liu, Bang; Cao, Ying; Zhu, Xiaozhe; Zhao, Chenchen

(Elsevier, 2023)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Chen, Zhihui
AU  - Pang, Wancheng
AU  - Liu, Bang
AU  - Cao, Ying
AU  - Zhu, Xiaozhe
AU  - Zhao, Chenchen
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5547
AB  - In this study, efficient simultaneous elimination of typical mine pollutants benzotriazole (BTA) and Cr(VI) was achieved by using a copper slag (CS) activated peroxodisulfate (PDS) Fenton system, with WS2 as a co-catalyst. The combined use of these two mine-sourced materials enables excellent pollution removal efficiency. CS can continuously release ferrous ions for the advanced oxidation processes (AOPs), while WS2 as a co-catalyst has key roles in acceleration of the rate-limiting step of Fe3+/Fe2+ conversion and prevention of Fe3+ precipitation. In this process, Fe3+/Fe2+ conversion primarily occurs on the surface of WS2, whereas PDS decomposition and BTA degradation are dominated by homogeneous Fenton reactions. Dissolved Fe2+ has a main role in the activation of PDS and generation of ROS. The contributions of free radicals, singlet oxygen and Fe(IV) in BTA degradation were carefully evaluated. Fe(IV) was identified as the major ROS responsible for degradation of BTA in the CS/WS2/PDS system. This was further confirmed by the Raman spectra and the detection of BTA degradation products formed by the transfer of oxygen atoms. Kinetics calculation showed that Fe(IV) was responsible for 63.4 % of the degradation of BTA. More importantly, water matrix had a low impact on the degradation of BTA due to the high selectivity of Fe(IV). This study provides a new strategy for a cost-effective and efficient decontamination of the environment in mining areas.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)
VL  - 451
IS  - 3
SP  - 138888
DO  - 10.1016/j.cej.2022.138888
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Šolević Knudsen, Tatjana and Chen, Zhihui and Pang, Wancheng and Liu, Bang and Cao, Ying and Zhu, Xiaozhe and Zhao, Chenchen",
year = "2023",
abstract = "In this study, efficient simultaneous elimination of typical mine pollutants benzotriazole (BTA) and Cr(VI) was achieved by using a copper slag (CS) activated peroxodisulfate (PDS) Fenton system, with WS2 as a co-catalyst. The combined use of these two mine-sourced materials enables excellent pollution removal efficiency. CS can continuously release ferrous ions for the advanced oxidation processes (AOPs), while WS2 as a co-catalyst has key roles in acceleration of the rate-limiting step of Fe3+/Fe2+ conversion and prevention of Fe3+ precipitation. In this process, Fe3+/Fe2+ conversion primarily occurs on the surface of WS2, whereas PDS decomposition and BTA degradation are dominated by homogeneous Fenton reactions. Dissolved Fe2+ has a main role in the activation of PDS and generation of ROS. The contributions of free radicals, singlet oxygen and Fe(IV) in BTA degradation were carefully evaluated. Fe(IV) was identified as the major ROS responsible for degradation of BTA in the CS/WS2/PDS system. This was further confirmed by the Raman spectra and the detection of BTA degradation products formed by the transfer of oxygen atoms. Kinetics calculation showed that Fe(IV) was responsible for 63.4 % of the degradation of BTA. More importantly, water matrix had a low impact on the degradation of BTA due to the high selectivity of Fe(IV). This study provides a new strategy for a cost-effective and efficient decontamination of the environment in mining areas.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)",
volume = "451",
number = "3",
pages = "138888",
doi = "10.1016/j.cej.2022.138888"
}
Ma, B., Yao, J., Šolević Knudsen, T., Chen, Z., Pang, W., Liu, B., Cao, Y., Zhu, X.,& Zhao, C.. (2023). Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI). in Chemical Engineering Journal
Elsevier., 451(3), 138888.
https://doi.org/10.1016/j.cej.2022.138888
Ma B, Yao J, Šolević Knudsen T, Chen Z, Pang W, Liu B, Cao Y, Zhu X, Zhao C. Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI). in Chemical Engineering Journal. 2023;451(3):138888.
doi:10.1016/j.cej.2022.138888 .
Ma, Bo, Yao, Jun, Šolević Knudsen, Tatjana, Chen, Zhihui, Pang, Wancheng, Liu, Bang, Cao, Ying, Zhu, Xiaozhe, Zhao, Chenchen, "Co-catalytic effect of WS2 on the copper slag mediated peroxodisulfate activation for the simultaneous elimination of typical flotation reagent benzotriazole and Cr(VI)" in Chemical Engineering Journal, 451, no. 3 (2023):138888,
https://doi.org/10.1016/j.cej.2022.138888 . .
13
12

Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas

Zhao, Chenchen; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhu, Xiaozhe; Ma, Bo

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Zhao, Chenchen
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhu, Xiaozhe
AU  - Ma, Bo
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5645
AB  - In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.
PB  - Elsevier B.V.
T2  - Science of the Total Environment
T1  - Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas
VL  - 865
SP  - 161283
DO  - 10.1016/j.scitotenv.2022.161283
ER  - 
@article{
author = "Zhao, Chenchen and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhu, Xiaozhe and Ma, Bo",
year = "2023",
abstract = "In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.",
publisher = "Elsevier B.V.",
journal = "Science of the Total Environment",
title = "Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas",
volume = "865",
pages = "161283",
doi = "10.1016/j.scitotenv.2022.161283"
}
Zhao, C., Yao, J., Šolević Knudsen, T., Liu, J., Zhu, X.,& Ma, B.. (2023). Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. in Science of the Total Environment
Elsevier B.V.., 865, 161283.
https://doi.org/10.1016/j.scitotenv.2022.161283
Zhao C, Yao J, Šolević Knudsen T, Liu J, Zhu X, Ma B. Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. in Science of the Total Environment. 2023;865:161283.
doi:10.1016/j.scitotenv.2022.161283 .
Zhao, Chenchen, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhu, Xiaozhe, Ma, Bo, "Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas" in Science of the Total Environment, 865 (2023):161283,
https://doi.org/10.1016/j.scitotenv.2022.161283 . .
4
3

Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation

Chen, Zhihui; Yao, Jun; Šolević Knudsen, Tatjana; Ma, Bo; Liu, Bang; Li, Haoa; Zhu, Xiaozhe; Zhao, Chenchen; Pang, Wancheng; Cao, Ying

(Elsevier, 2022)

TY  - JOUR
AU  - Chen, Zhihui
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Ma, Bo
AU  - Liu, Bang
AU  - Li, Haoa
AU  - Zhu, Xiaozhe
AU  - Zhao, Chenchen
AU  - Pang, Wancheng
AU  - Cao, Ying
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5267
AB  - The environmental impact of the mining industry requires efficient and eco-friendly technologies to mitigate the presence of mineral flotation reagents (MFRs) in mineral processing wastewater (MPW) prior to their discharge into the environment. In this work, for the first time, a robust, easily separable and reusable biocatalyst, Fe3O4@SiO2-NH2-Lac, was used for the degradation of a novel mineral flotation reagent 8-hydroxyquinoline (8-HQ). Under optimized conditions, Fe3O4@SiO2-NH2-Lac achieved 89.2% 8-HQ degradation efficiency within 6 h. The effect of the main constituents of MPW on 8-HQ degradation, including metal ions, organic solvents, surfactant, metal chelator and flotation frother was evaluated. The Fe3O4@SiO2-NH2-Lac also displayed favorable degradation efficiency of 8-HQ in real lead–zinc mine water. The biocatalyst could be easily recovered and had a satisfactory reusability, retaining 64.5% of 8-HQ degradation efficiency in the sixth reaction cycle. Identification of intermediate products revealed that Fe3O4@SiO2-NH2-Lac mediated reaction predominantly generated various structural 8-HQ oligomers/polymers. A potential degradation pathway for 8-HQ was speculated as follows: Fe3O4@SiO2-NH2-Lac initially catalyzed the oxidation of 8-HQ to yield the corresponding reactive radical intermediates, which subsequently undergone self-coupling reaction via C − C and C − O − C covalent coupling at their ortho and/or para positions, finally forming oligomers and polymers. The inhibition assays of marine bacterium (Vibrio fischeri) demonstrated that the toxicity of 8-HQ and its intermediate products was effectively reduced after Fe3O4@SiO2-NH2-Lac treatment. The results of this study might present an alternative immobilized laccase-based clean biotechnology for the clean-up and detoxification of 8-HQ contaminated MPW.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation
VL  - 432
SP  - 134239
DO  - 10.1016/j.cej.2021.134239
ER  - 
@article{
author = "Chen, Zhihui and Yao, Jun and Šolević Knudsen, Tatjana and Ma, Bo and Liu, Bang and Li, Haoa and Zhu, Xiaozhe and Zhao, Chenchen and Pang, Wancheng and Cao, Ying",
year = "2022",
abstract = "The environmental impact of the mining industry requires efficient and eco-friendly technologies to mitigate the presence of mineral flotation reagents (MFRs) in mineral processing wastewater (MPW) prior to their discharge into the environment. In this work, for the first time, a robust, easily separable and reusable biocatalyst, Fe3O4@SiO2-NH2-Lac, was used for the degradation of a novel mineral flotation reagent 8-hydroxyquinoline (8-HQ). Under optimized conditions, Fe3O4@SiO2-NH2-Lac achieved 89.2% 8-HQ degradation efficiency within 6 h. The effect of the main constituents of MPW on 8-HQ degradation, including metal ions, organic solvents, surfactant, metal chelator and flotation frother was evaluated. The Fe3O4@SiO2-NH2-Lac also displayed favorable degradation efficiency of 8-HQ in real lead–zinc mine water. The biocatalyst could be easily recovered and had a satisfactory reusability, retaining 64.5% of 8-HQ degradation efficiency in the sixth reaction cycle. Identification of intermediate products revealed that Fe3O4@SiO2-NH2-Lac mediated reaction predominantly generated various structural 8-HQ oligomers/polymers. A potential degradation pathway for 8-HQ was speculated as follows: Fe3O4@SiO2-NH2-Lac initially catalyzed the oxidation of 8-HQ to yield the corresponding reactive radical intermediates, which subsequently undergone self-coupling reaction via C − C and C − O − C covalent coupling at their ortho and/or para positions, finally forming oligomers and polymers. The inhibition assays of marine bacterium (Vibrio fischeri) demonstrated that the toxicity of 8-HQ and its intermediate products was effectively reduced after Fe3O4@SiO2-NH2-Lac treatment. The results of this study might present an alternative immobilized laccase-based clean biotechnology for the clean-up and detoxification of 8-HQ contaminated MPW.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation",
volume = "432",
pages = "134239",
doi = "10.1016/j.cej.2021.134239"
}
Chen, Z., Yao, J., Šolević Knudsen, T., Ma, B., Liu, B., Li, H., Zhu, X., Zhao, C., Pang, W.,& Cao, Y.. (2022). Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 432, 134239.
https://doi.org/10.1016/j.cej.2021.134239
Chen Z, Yao J, Šolević Knudsen T, Ma B, Liu B, Li H, Zhu X, Zhao C, Pang W, Cao Y. Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation. in Chemical Engineering Journal. 2022;432:134239.
doi:10.1016/j.cej.2021.134239 .
Chen, Zhihui, Yao, Jun, Šolević Knudsen, Tatjana, Ma, Bo, Liu, Bang, Li, Haoa, Zhu, Xiaozhe, Zhao, Chenchen, Pang, Wancheng, Cao, Ying, "Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation" in Chemical Engineering Journal, 432 (2022):134239,
https://doi.org/10.1016/j.cej.2021.134239 . .
11
10

Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI

Ma, Bo; Yao, Jun; Šolević Knudsen, Tatjana; Chen, Zhihui; Liu, Bang; Zhao, Chenchen; Zhu, Xiaozhe

(Elsevier, 2022)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Chen, Zhihui
AU  - Liu, Bang
AU  - Zhao, Chenchen
AU  - Zhu, Xiaozhe
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5405
AB  - The heavy metal and organic pollution caused by mining activities keep attracting attention, thus an economic and efficient treatment for combined pollution is pressing. In this study, the simultaneous removal performance of typical organic flotation reagent 8-hydroxyquinoline (8-HQ) and Cr(VI) was investigated via heterogeneous Fenton process induced by a novel polydopamine (PDA) functionalized attapulgite supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI). Batch experiments showed that PDA/ATP-nZVI had better catalytic reactivity and reduction ability than both ATP-nZVI and nZVI. Under acidic condition, 96.0% of 8-HQ was degraded accompanied with the 42.5% of total organic carbon (TOC) decrease, while 95.8% of Cr(VI) removal efficiency was accomplished by PDA/ATP-nZVI. PDA not only served as redox mediator in expediting electron transfer, but also acted as electron donor that accelerated transformation from Fe(III) to both dissolved Fe(II) and surface Fe(II), which resulted in the increased degradation of 8-HQ. The synergic removal behavior between 8-HQ and Cr(VI) was discussed and the reaction mechanism in the persulfate (PS)-PDA/ATP-nZVI system was also explored. This study developed a highly efficient heterogeneous catalyst, and demonstrated that the PS-PDA/ATP-nZVI system had a potential for remediation of mine environment polluted by both heavy metals and organic flotation reagents.
PB  - Elsevier
T2  - Journal of Hazardous Materials
T1  - Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI
VL  - 424
IS  - 126698
DO  - 10.1016/j.jhazmat.2021.126698
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Šolević Knudsen, Tatjana and Chen, Zhihui and Liu, Bang and Zhao, Chenchen and Zhu, Xiaozhe",
year = "2022",
abstract = "The heavy metal and organic pollution caused by mining activities keep attracting attention, thus an economic and efficient treatment for combined pollution is pressing. In this study, the simultaneous removal performance of typical organic flotation reagent 8-hydroxyquinoline (8-HQ) and Cr(VI) was investigated via heterogeneous Fenton process induced by a novel polydopamine (PDA) functionalized attapulgite supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI). Batch experiments showed that PDA/ATP-nZVI had better catalytic reactivity and reduction ability than both ATP-nZVI and nZVI. Under acidic condition, 96.0% of 8-HQ was degraded accompanied with the 42.5% of total organic carbon (TOC) decrease, while 95.8% of Cr(VI) removal efficiency was accomplished by PDA/ATP-nZVI. PDA not only served as redox mediator in expediting electron transfer, but also acted as electron donor that accelerated transformation from Fe(III) to both dissolved Fe(II) and surface Fe(II), which resulted in the increased degradation of 8-HQ. The synergic removal behavior between 8-HQ and Cr(VI) was discussed and the reaction mechanism in the persulfate (PS)-PDA/ATP-nZVI system was also explored. This study developed a highly efficient heterogeneous catalyst, and demonstrated that the PS-PDA/ATP-nZVI system had a potential for remediation of mine environment polluted by both heavy metals and organic flotation reagents.",
publisher = "Elsevier",
journal = "Journal of Hazardous Materials",
title = "Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI",
volume = "424",
number = "126698",
doi = "10.1016/j.jhazmat.2021.126698"
}
Ma, B., Yao, J., Šolević Knudsen, T., Chen, Z., Liu, B., Zhao, C.,& Zhu, X.. (2022). Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. in Journal of Hazardous Materials
Elsevier., 424(126698).
https://doi.org/10.1016/j.jhazmat.2021.126698
Ma B, Yao J, Šolević Knudsen T, Chen Z, Liu B, Zhao C, Zhu X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. in Journal of Hazardous Materials. 2022;424(126698).
doi:10.1016/j.jhazmat.2021.126698 .
Ma, Bo, Yao, Jun, Šolević Knudsen, Tatjana, Chen, Zhihui, Liu, Bang, Zhao, Chenchen, Zhu, Xiaozhe, "Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI" in Journal of Hazardous Materials, 424, no. 126698 (2022),
https://doi.org/10.1016/j.jhazmat.2021.126698 . .
27
1
26

Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism

Ma, Bo; Yao, Jun; Chen, Zhihui; Liu, Bang; Kim, Jonghyok; Zhao, Chenchen; Zhu, Xiaozhe; Mihucz, Victor G.; Minkina, Tatiana; Šolević Knudsen, Tatjana

(Elsevier, 2022)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Chen, Zhihui
AU  - Liu, Bang
AU  - Kim, Jonghyok
AU  - Zhao, Chenchen
AU  - Zhu, Xiaozhe
AU  - Mihucz, Victor G.
AU  - Minkina, Tatiana
AU  - Šolević Knudsen, Tatjana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4759
AB  - In this study, a polydopamine (PDA) modified attapulgite (ATP) supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI) was rapidly synthesized under acidic conditions, and employed to alleviate Cr(VI) toxicity from an aqueous solution. Kinetic studies revealed that Cr(VI) adsorption process followed the pseudo-second order model, suggesting chemisorption was the dominant adsorption mechanism. Liu isotherm adsorption model was able to better describe the Cr(VI) adsorption isotherm with the maximum adsorption capacity of 134.05 mg/g. The thermodynamic study demonstrated that the adsorption process occurred spontaneously, accompanied by the increase in entropy and endothermic reaction. Low concentrations of coexisting ions had negligible effects on the removal of Cr(VI), while high concentrations of interfering ions were able to facilitate the removal of Cr(VI). Reactive species test revealed that Fe2+ played a key role in Cr(VI) reduction by PDA/ATP-nZVI. PDA enhanced the elimination of Cr(VI) via donation of electrons to Cr(VI) and acceleration of Fe3+ transformation to Fe2+. Furthermore, PDA was able to effectively inhibit the leaching of iron species and generation of ferric hydroxide sludge. Mechanistic study revealed that 72% of Cr(VI) elimination was attributed to reduction/precipitation, while 28% of Cr(VI) elimination was due to the surface adsorption.
(1-4) in order to obtain adherence,
e.g.,
PB  - Elsevier
T2  - Chemosphere
T1  - Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism
VL  - 287
SP  - 131970
DO  - 10.1016/j.chemosphere.2021.131970
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Chen, Zhihui and Liu, Bang and Kim, Jonghyok and Zhao, Chenchen and Zhu, Xiaozhe and Mihucz, Victor G. and Minkina, Tatiana and Šolević Knudsen, Tatjana",
year = "2022",
abstract = "In this study, a polydopamine (PDA) modified attapulgite (ATP) supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI) was rapidly synthesized under acidic conditions, and employed to alleviate Cr(VI) toxicity from an aqueous solution. Kinetic studies revealed that Cr(VI) adsorption process followed the pseudo-second order model, suggesting chemisorption was the dominant adsorption mechanism. Liu isotherm adsorption model was able to better describe the Cr(VI) adsorption isotherm with the maximum adsorption capacity of 134.05 mg/g. The thermodynamic study demonstrated that the adsorption process occurred spontaneously, accompanied by the increase in entropy and endothermic reaction. Low concentrations of coexisting ions had negligible effects on the removal of Cr(VI), while high concentrations of interfering ions were able to facilitate the removal of Cr(VI). Reactive species test revealed that Fe2+ played a key role in Cr(VI) reduction by PDA/ATP-nZVI. PDA enhanced the elimination of Cr(VI) via donation of electrons to Cr(VI) and acceleration of Fe3+ transformation to Fe2+. Furthermore, PDA was able to effectively inhibit the leaching of iron species and generation of ferric hydroxide sludge. Mechanistic study revealed that 72% of Cr(VI) elimination was attributed to reduction/precipitation, while 28% of Cr(VI) elimination was due to the surface adsorption.
(1-4) in order to obtain adherence,
e.g.,",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism",
volume = "287",
pages = "131970",
doi = "10.1016/j.chemosphere.2021.131970"
}
Ma, B., Yao, J., Chen, Z., Liu, B., Kim, J., Zhao, C., Zhu, X., Mihucz, V. G., Minkina, T.,& Šolević Knudsen, T.. (2022). Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. in Chemosphere
Elsevier., 287, 131970.
https://doi.org/10.1016/j.chemosphere.2021.131970
Ma B, Yao J, Chen Z, Liu B, Kim J, Zhao C, Zhu X, Mihucz VG, Minkina T, Šolević Knudsen T. Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. in Chemosphere. 2022;287:131970.
doi:10.1016/j.chemosphere.2021.131970 .
Ma, Bo, Yao, Jun, Chen, Zhihui, Liu, Bang, Kim, Jonghyok, Zhao, Chenchen, Zhu, Xiaozhe, Mihucz, Victor G., Minkina, Tatiana, Šolević Knudsen, Tatjana, "Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism" in Chemosphere, 287 (2022):131970,
https://doi.org/10.1016/j.chemosphere.2021.131970 . .
26
18

Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation

Liu, Jian-li; Yao, Jun; Wang, Fei; Min, Ning; Gu, Ji-hai; Li, Zi-fu; Sunahara, Geoffrey; Duran, Robert; Šolević Knudsen, Tatjana; Hudson-Edwards, Karen A.; Alakangas, Lena

(Elsevier, 2019)

TY  - JOUR
AU  - Liu, Jian-li
AU  - Yao, Jun
AU  - Wang, Fei
AU  - Min, Ning
AU  - Gu, Ji-hai
AU  - Li, Zi-fu
AU  - Sunahara, Geoffrey
AU  - Duran, Robert
AU  - Šolević Knudsen, Tatjana
AU  - Hudson-Edwards, Karen A.
AU  - Alakangas, Lena
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2957
AB  - Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
PB  - Elsevier
T2  - Environmental Pollution
T1  - Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation
VL  - 247
SP  - 98
EP  - 107
DO  - 10.1016/j.envpol.2018.12.045
ER  - 
@article{
author = "Liu, Jian-li and Yao, Jun and Wang, Fei and Min, Ning and Gu, Ji-hai and Li, Zi-fu and Sunahara, Geoffrey and Duran, Robert and Šolević Knudsen, Tatjana and Hudson-Edwards, Karen A. and Alakangas, Lena",
year = "2019",
abstract = "Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.",
publisher = "Elsevier",
journal = "Environmental Pollution",
title = "Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation",
volume = "247",
pages = "98-107",
doi = "10.1016/j.envpol.2018.12.045"
}
Liu, J., Yao, J., Wang, F., Min, N., Gu, J., Li, Z., Sunahara, G., Duran, R., Šolević Knudsen, T., Hudson-Edwards, K. A.,& Alakangas, L.. (2019). Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. in Environmental Pollution
Elsevier., 247, 98-107.
https://doi.org/10.1016/j.envpol.2018.12.045
Liu J, Yao J, Wang F, Min N, Gu J, Li Z, Sunahara G, Duran R, Šolević Knudsen T, Hudson-Edwards KA, Alakangas L. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. in Environmental Pollution. 2019;247:98-107.
doi:10.1016/j.envpol.2018.12.045 .
Liu, Jian-li, Yao, Jun, Wang, Fei, Min, Ning, Gu, Ji-hai, Li, Zi-fu, Sunahara, Geoffrey, Duran, Robert, Šolević Knudsen, Tatjana, Hudson-Edwards, Karen A., Alakangas, Lena, "Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation" in Environmental Pollution, 247 (2019):98-107,
https://doi.org/10.1016/j.envpol.2018.12.045 . .
11
63
30
53

Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation

Liu, Jian-li; Yao, Jun; Wang, Fei; Min, Ning; Gu, Ji-hai; Li, Zi-fu; Sunahara, Geoffrey; Duran, Robert; Šolević Knudsen, Tatjana; Hudson-Edwards, Karen A.; Alakangas, Lena

(Elsevier, 2019)

TY  - JOUR
AU  - Liu, Jian-li
AU  - Yao, Jun
AU  - Wang, Fei
AU  - Min, Ning
AU  - Gu, Ji-hai
AU  - Li, Zi-fu
AU  - Sunahara, Geoffrey
AU  - Duran, Robert
AU  - Šolević Knudsen, Tatjana
AU  - Hudson-Edwards, Karen A.
AU  - Alakangas, Lena
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2958
AB  - Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
PB  - Elsevier
T2  - Environmental Pollution
T1  - Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation
VL  - 247
SP  - 98
EP  - 107
DO  - 10.1016/j.envpol.2018.12.045
ER  - 
@article{
author = "Liu, Jian-li and Yao, Jun and Wang, Fei and Min, Ning and Gu, Ji-hai and Li, Zi-fu and Sunahara, Geoffrey and Duran, Robert and Šolević Knudsen, Tatjana and Hudson-Edwards, Karen A. and Alakangas, Lena",
year = "2019",
abstract = "Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.",
publisher = "Elsevier",
journal = "Environmental Pollution",
title = "Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation",
volume = "247",
pages = "98-107",
doi = "10.1016/j.envpol.2018.12.045"
}
Liu, J., Yao, J., Wang, F., Min, N., Gu, J., Li, Z., Sunahara, G., Duran, R., Šolević Knudsen, T., Hudson-Edwards, K. A.,& Alakangas, L.. (2019). Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. in Environmental Pollution
Elsevier., 247, 98-107.
https://doi.org/10.1016/j.envpol.2018.12.045
Liu J, Yao J, Wang F, Min N, Gu J, Li Z, Sunahara G, Duran R, Šolević Knudsen T, Hudson-Edwards KA, Alakangas L. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. in Environmental Pollution. 2019;247:98-107.
doi:10.1016/j.envpol.2018.12.045 .
Liu, Jian-li, Yao, Jun, Wang, Fei, Min, Ning, Gu, Ji-hai, Li, Zi-fu, Sunahara, Geoffrey, Duran, Robert, Šolević Knudsen, Tatjana, Hudson-Edwards, Karen A., Alakangas, Lena, "Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation" in Environmental Pollution, 247 (2019):98-107,
https://doi.org/10.1016/j.envpol.2018.12.045 . .
11
63
30
53

Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water

Lu, Chao; Yao, Jun; Šolević Knudsen, Tatjana; Amde, Meseret; Gu, Jihai; Liu, Jianli; Li, Hao; Zhang, Junyang

(Elsevier, 2019)

TY  - JOUR
AU  - Lu, Chao
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Amde, Meseret
AU  - Gu, Jihai
AU  - Liu, Jianli
AU  - Li, Hao
AU  - Zhang, Junyang
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3061
AB  - Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water
VL  - 238
SP  - 117942
DO  - 10.1016/j.jclepro.2019.117942
ER  - 
@article{
author = "Lu, Chao and Yao, Jun and Šolević Knudsen, Tatjana and Amde, Meseret and Gu, Jihai and Liu, Jianli and Li, Hao and Zhang, Junyang",
year = "2019",
abstract = "Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water",
volume = "238",
pages = "117942",
doi = "10.1016/j.jclepro.2019.117942"
}
Lu, C., Yao, J., Šolević Knudsen, T., Amde, M., Gu, J., Liu, J., Li, H.,& Zhang, J.. (2019). Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production
Elsevier., 238, 117942.
https://doi.org/10.1016/j.jclepro.2019.117942
Lu C, Yao J, Šolević Knudsen T, Amde M, Gu J, Liu J, Li H, Zhang J. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production. 2019;238:117942.
doi:10.1016/j.jclepro.2019.117942 .
Lu, Chao, Yao, Jun, Šolević Knudsen, Tatjana, Amde, Meseret, Gu, Jihai, Liu, Jianli, Li, Hao, Zhang, Junyang, "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water" in Journal of Cleaner Production, 238 (2019):117942,
https://doi.org/10.1016/j.jclepro.2019.117942 . .
10
3
11

Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water

Lu, Chao; Yao, Jun; Šolević Knudsen, Tatjana; Amde, Meseret; Gu, Jihai; Liu, Jianli; Li, Hao; Zhang, Junyang

(Elsevier, 2019)

TY  - JOUR
AU  - Lu, Chao
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Amde, Meseret
AU  - Gu, Jihai
AU  - Liu, Jianli
AU  - Li, Hao
AU  - Zhang, Junyang
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3152
AB  - Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water
VL  - 238
SP  - 117942
DO  - 10.1016/j.jclepro.2019.117942
ER  - 
@article{
author = "Lu, Chao and Yao, Jun and Šolević Knudsen, Tatjana and Amde, Meseret and Gu, Jihai and Liu, Jianli and Li, Hao and Zhang, Junyang",
year = "2019",
abstract = "Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water",
volume = "238",
pages = "117942",
doi = "10.1016/j.jclepro.2019.117942"
}
Lu, C., Yao, J., Šolević Knudsen, T., Amde, M., Gu, J., Liu, J., Li, H.,& Zhang, J.. (2019). Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production
Elsevier., 238, 117942.
https://doi.org/10.1016/j.jclepro.2019.117942
Lu C, Yao J, Šolević Knudsen T, Amde M, Gu J, Liu J, Li H, Zhang J. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production. 2019;238:117942.
doi:10.1016/j.jclepro.2019.117942 .
Lu, Chao, Yao, Jun, Šolević Knudsen, Tatjana, Amde, Meseret, Gu, Jihai, Liu, Jianli, Li, Hao, Zhang, Junyang, "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water" in Journal of Cleaner Production, 238 (2019):117942,
https://doi.org/10.1016/j.jclepro.2019.117942 . .
10
3
11

Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas

Zhu, Xiaozhe; Yao, Jun; Wang, Fei; Yuan, Zhimin; Liu, Jianli; Jordan, Gyozo; Šolević Knudsen, Tatjana; Avdalović, Jelena

(Elsevier, 2018)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Wang, Fei
AU  - Yuan, Zhimin
AU  - Liu, Jianli
AU  - Jordan, Gyozo
AU  - Šolević Knudsen, Tatjana
AU  - Avdalović, Jelena
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2348
AB  - The combined effects of antimony (Sb) and sodium diethyldithiocarbamate (DDTC), a common organic flotation reagent, on soil microbial activity and speciation changes of heavy metals were investigated for the first time. The results showed that the exchangeable fraction of Sb was transformed to a stable residual fraction during the incubation period, and the addition of DDTC promoted the transformation compared with single Sb pollution, probably because DDTC can react with heavy metals to form a complex. In addition, the presence of DDTC and Sb inhibited the soil microbial activity to varying degrees. The growth rate constant k of different interaction systems was in the following order on the 28th day: control group >= single DDTC pollution > combined pollution > single Sb pollution. A correlation analysis showed that the concentration of exchangeable Sb was the primary factor that affected the toxic reaction under combined pollution conditions, and it significantly affected the characteristics of the soil microorganisms. All the observations provide useful information for a better understanding of the toxic effects and potential risks of combined Sb and DDTC pollution in antimony mining areas.
PB  - Elsevier
T2  - Journal of Hazardous Materials
T1  - Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas
VL  - 349
SP  - 160
EP  - 167
DO  - 10.1016/j.jhazmat.2018.01.044
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Wang, Fei and Yuan, Zhimin and Liu, Jianli and Jordan, Gyozo and Šolević Knudsen, Tatjana and Avdalović, Jelena",
year = "2018",
abstract = "The combined effects of antimony (Sb) and sodium diethyldithiocarbamate (DDTC), a common organic flotation reagent, on soil microbial activity and speciation changes of heavy metals were investigated for the first time. The results showed that the exchangeable fraction of Sb was transformed to a stable residual fraction during the incubation period, and the addition of DDTC promoted the transformation compared with single Sb pollution, probably because DDTC can react with heavy metals to form a complex. In addition, the presence of DDTC and Sb inhibited the soil microbial activity to varying degrees. The growth rate constant k of different interaction systems was in the following order on the 28th day: control group >= single DDTC pollution > combined pollution > single Sb pollution. A correlation analysis showed that the concentration of exchangeable Sb was the primary factor that affected the toxic reaction under combined pollution conditions, and it significantly affected the characteristics of the soil microorganisms. All the observations provide useful information for a better understanding of the toxic effects and potential risks of combined Sb and DDTC pollution in antimony mining areas.",
publisher = "Elsevier",
journal = "Journal of Hazardous Materials",
title = "Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas",
volume = "349",
pages = "160-167",
doi = "10.1016/j.jhazmat.2018.01.044"
}
Zhu, X., Yao, J., Wang, F., Yuan, Z., Liu, J., Jordan, G., Šolević Knudsen, T.,& Avdalović, J.. (2018). Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas. in Journal of Hazardous Materials
Elsevier., 349, 160-167.
https://doi.org/10.1016/j.jhazmat.2018.01.044
Zhu X, Yao J, Wang F, Yuan Z, Liu J, Jordan G, Šolević Knudsen T, Avdalović J. Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas. in Journal of Hazardous Materials. 2018;349:160-167.
doi:10.1016/j.jhazmat.2018.01.044 .
Zhu, Xiaozhe, Yao, Jun, Wang, Fei, Yuan, Zhimin, Liu, Jianli, Jordan, Gyozo, Šolević Knudsen, Tatjana, Avdalović, Jelena, "Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas" in Journal of Hazardous Materials, 349 (2018):160-167,
https://doi.org/10.1016/j.jhazmat.2018.01.044 . .
82
36
78

China's most typical nonferrous organic-metal facilities own specific microbial communities

Liu, Jian-li; Yao, Jun; Wang, Fei; Ni, Wen; Liu, Xing-yu; Sunahara, Geoffrey; Duran, Robert; Jordan, Gyozo; Hudson-Edwards, Karen A.; Alakangas, Lena; Šolević Knudsen, Tatjana; Zhu, Xiao-zhe; Zhang, Yi-yue; Li, Zi-fu

(Nature Publishing Group, 2018)

TY  - JOUR
AU  - Liu, Jian-li
AU  - Yao, Jun
AU  - Wang, Fei
AU  - Ni, Wen
AU  - Liu, Xing-yu
AU  - Sunahara, Geoffrey
AU  - Duran, Robert
AU  - Jordan, Gyozo
AU  - Hudson-Edwards, Karen A.
AU  - Alakangas, Lena
AU  - Šolević Knudsen, Tatjana
AU  - Zhu, Xiao-zhe
AU  - Zhang, Yi-yue
AU  - Li, Zi-fu
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2435
AB  - The diversity and function of microorganisms have yet to be explored at non-ferrous metal mining facilities (NMMFs), which are the world's largest and potentially most toxic sources of co-existing metal(loid)s and flotation reagents (FRs). The diversity and inferred functions of different bacterial communities inhabiting two types of sites (active and abandoned) in Guangxi province (China) were investigated for the first time. Here we show that the structure and diversity of bacteria correlated with the types of mine sites, metal(loid) s, and FRs concentrations; and best correlated with the combination of pH, Cu, Pb, and Mn. Combined microbial coenobium may play a pivotal role in NMMFs microbial life. Arenimonas, specific in active mine sites and an acidophilic bacterium, carries functions able to cope with the extreme conditions, whereas Latescibacteria specific in abandoned sites can degrade organics. Such a bacterial consortium provides new insights to develop cost-effective remediation strategies of co-contaminated sites that currently remain intractable for bioremediation.
PB  - Nature Publishing Group
T2  - Scientific Reports
T1  - China's most typical nonferrous organic-metal facilities own specific microbial communities
VL  - 8
DO  - 10.1038/s41598-018-30519-1
ER  - 
@article{
author = "Liu, Jian-li and Yao, Jun and Wang, Fei and Ni, Wen and Liu, Xing-yu and Sunahara, Geoffrey and Duran, Robert and Jordan, Gyozo and Hudson-Edwards, Karen A. and Alakangas, Lena and Šolević Knudsen, Tatjana and Zhu, Xiao-zhe and Zhang, Yi-yue and Li, Zi-fu",
year = "2018",
abstract = "The diversity and function of microorganisms have yet to be explored at non-ferrous metal mining facilities (NMMFs), which are the world's largest and potentially most toxic sources of co-existing metal(loid)s and flotation reagents (FRs). The diversity and inferred functions of different bacterial communities inhabiting two types of sites (active and abandoned) in Guangxi province (China) were investigated for the first time. Here we show that the structure and diversity of bacteria correlated with the types of mine sites, metal(loid) s, and FRs concentrations; and best correlated with the combination of pH, Cu, Pb, and Mn. Combined microbial coenobium may play a pivotal role in NMMFs microbial life. Arenimonas, specific in active mine sites and an acidophilic bacterium, carries functions able to cope with the extreme conditions, whereas Latescibacteria specific in abandoned sites can degrade organics. Such a bacterial consortium provides new insights to develop cost-effective remediation strategies of co-contaminated sites that currently remain intractable for bioremediation.",
publisher = "Nature Publishing Group",
journal = "Scientific Reports",
title = "China's most typical nonferrous organic-metal facilities own specific microbial communities",
volume = "8",
doi = "10.1038/s41598-018-30519-1"
}
Liu, J., Yao, J., Wang, F., Ni, W., Liu, X., Sunahara, G., Duran, R., Jordan, G., Hudson-Edwards, K. A., Alakangas, L., Šolević Knudsen, T., Zhu, X., Zhang, Y.,& Li, Z.. (2018). China's most typical nonferrous organic-metal facilities own specific microbial communities. in Scientific Reports
Nature Publishing Group., 8.
https://doi.org/10.1038/s41598-018-30519-1
Liu J, Yao J, Wang F, Ni W, Liu X, Sunahara G, Duran R, Jordan G, Hudson-Edwards KA, Alakangas L, Šolević Knudsen T, Zhu X, Zhang Y, Li Z. China's most typical nonferrous organic-metal facilities own specific microbial communities. in Scientific Reports. 2018;8.
doi:10.1038/s41598-018-30519-1 .
Liu, Jian-li, Yao, Jun, Wang, Fei, Ni, Wen, Liu, Xing-yu, Sunahara, Geoffrey, Duran, Robert, Jordan, Gyozo, Hudson-Edwards, Karen A., Alakangas, Lena, Šolević Knudsen, Tatjana, Zhu, Xiao-zhe, Zhang, Yi-yue, Li, Zi-fu, "China's most typical nonferrous organic-metal facilities own specific microbial communities" in Scientific Reports, 8 (2018),
https://doi.org/10.1038/s41598-018-30519-1 . .
28
15
28

Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters

Zhuang, Rensheng; Zabar, Romina; Grbović, Gorica; Dolenc, Darko; Yao, Jun; Tisler, Tatjana; Trebše, Polonca

(Slovenian Chemical Society, 2013)

TY  - JOUR
AU  - Zhuang, Rensheng
AU  - Zabar, Romina
AU  - Grbović, Gorica
AU  - Dolenc, Darko
AU  - Yao, Jun
AU  - Tisler, Tatjana
AU  - Trebše, Polonca
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1228
AB  - In our study, the transformation of two most widely used UV filters, benzophenone-3 (BP3) and benzophenone-4 (BP4), in chlorinated water with disinfection reagents sodium hypochlorite (NaClO) and trichloroisocyanuric acid (TCCA) was studied. Based on the HPLC/MS and UV-Vis analysis the formation of two different chlorinated products (5-chloro-2-hydroxy-4-methoxybenzophenone and 3,5-dichloro-2-hydroxy-4-methoxybenzophenone) was established. Identity of chlorinated products was confirmed by means of comparison of retention times with independently synthesized standards. Photostability study showed that dichloro-derivative in water is less stable then parent compounds, which is not the case for monochloro-derivatives. Toxicity of chlorinated compounds tested by Vibrio fischeri was found to be in the same range as that of the starting compounds. Preliminary testing of real water samples from swimming pools and sea swimming areas confirmed the presence of BP3 and its 3,5-dichloro derivative.
PB  - Slovenian Chemical Society
T2  - Acta Chimica Slovenica
T1  - Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters
VL  - 60
IS  - 4
SP  - 826
EP  - 832
UR  - https://hdl.handle.net/21.15107/rcub_cer_1228
ER  - 
@article{
author = "Zhuang, Rensheng and Zabar, Romina and Grbović, Gorica and Dolenc, Darko and Yao, Jun and Tisler, Tatjana and Trebše, Polonca",
year = "2013",
abstract = "In our study, the transformation of two most widely used UV filters, benzophenone-3 (BP3) and benzophenone-4 (BP4), in chlorinated water with disinfection reagents sodium hypochlorite (NaClO) and trichloroisocyanuric acid (TCCA) was studied. Based on the HPLC/MS and UV-Vis analysis the formation of two different chlorinated products (5-chloro-2-hydroxy-4-methoxybenzophenone and 3,5-dichloro-2-hydroxy-4-methoxybenzophenone) was established. Identity of chlorinated products was confirmed by means of comparison of retention times with independently synthesized standards. Photostability study showed that dichloro-derivative in water is less stable then parent compounds, which is not the case for monochloro-derivatives. Toxicity of chlorinated compounds tested by Vibrio fischeri was found to be in the same range as that of the starting compounds. Preliminary testing of real water samples from swimming pools and sea swimming areas confirmed the presence of BP3 and its 3,5-dichloro derivative.",
publisher = "Slovenian Chemical Society",
journal = "Acta Chimica Slovenica",
title = "Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters",
volume = "60",
number = "4",
pages = "826-832",
url = "https://hdl.handle.net/21.15107/rcub_cer_1228"
}
Zhuang, R., Zabar, R., Grbović, G., Dolenc, D., Yao, J., Tisler, T.,& Trebše, P.. (2013). Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters. in Acta Chimica Slovenica
Slovenian Chemical Society., 60(4), 826-832.
https://hdl.handle.net/21.15107/rcub_cer_1228
Zhuang R, Zabar R, Grbović G, Dolenc D, Yao J, Tisler T, Trebše P. Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters. in Acta Chimica Slovenica. 2013;60(4):826-832.
https://hdl.handle.net/21.15107/rcub_cer_1228 .
Zhuang, Rensheng, Zabar, Romina, Grbović, Gorica, Dolenc, Darko, Yao, Jun, Tisler, Tatjana, Trebše, Polonca, "Stability and Toxicity of Selected Chlorinated Benzophenone-type UV Filters in Waters" in Acta Chimica Slovenica, 60, no. 4 (2013):826-832,
https://hdl.handle.net/21.15107/rcub_cer_1228 .
17