Radović, Ivana

Link to this page

Authority KeyName Variants
orcid::0000-0001-8278-4491
  • Radović, Ivana (12)
  • Stajčić, Ivana (7)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Predefined functional properties polymer composite materials processes and equipment development
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Functional, Functionalized and Advanced Nanomaterials
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties DOE/NNSA NA0003979
ESA ThermoLab-ISS/project AO-2009-1020 Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions
Advanced multicomponent metal systems and nanostructured materials with diverse functional properties Directed synthesis, structure and properties of multifunctional materials
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200325 (Military Technical Institute - MTI, Belgrade)
Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection North Carolina Central University, USA, NSF DMR EiR 2101041
North Carolina Central University, USA, NSF DMR PREM 2122044 Portuguese National Funding from FCT—Fundação para a Ciência e a Tecnologia under the project: UIDB/04561/2020

Author's Bibliography

Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior

Elhmali, Houda Taher; Stajčić, Ivana; Stajčić, Aleksandar; Pešić, Ivan; Jovanović, Marija; Petrović, Miloš; Radojević, Vesna

(MDPI, 2024)

TY  - JOUR
AU  - Elhmali, Houda Taher
AU  - Stajčić, Ivana
AU  - Stajčić, Aleksandar
AU  - Pešić, Ivan
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Radojević, Vesna
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7427
AB  - While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.
PB  - MDPI
T2  - Polymers
T1  - Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior
VL  - 16
IS  - 2
SP  - 278
DO  - 10.3390/polym16020278
ER  - 
@article{
author = "Elhmali, Houda Taher and Stajčić, Ivana and Stajčić, Aleksandar and Pešić, Ivan and Jovanović, Marija and Petrović, Miloš and Radojević, Vesna",
year = "2024",
abstract = "While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.",
publisher = "MDPI",
journal = "Polymers",
title = "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior",
volume = "16",
number = "2",
pages = "278",
doi = "10.3390/polym16020278"
}
Elhmali, H. T., Stajčić, I., Stajčić, A., Pešić, I., Jovanović, M., Petrović, M.,& Radojević, V.. (2024). Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers
MDPI., 16(2), 278.
https://doi.org/10.3390/polym16020278
Elhmali HT, Stajčić I, Stajčić A, Pešić I, Jovanović M, Petrović M, Radojević V. Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers. 2024;16(2):278.
doi:10.3390/polym16020278 .
Elhmali, Houda Taher, Stajčić, Ivana, Stajčić, Aleksandar, Pešić, Ivan, Jovanović, Marija, Petrović, Miloš, Radojević, Vesna, "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior" in Polymers, 16, no. 2 (2024):278,
https://doi.org/10.3390/polym16020278 . .

Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey

Stajčić, Ivana; Veljković, Filip; Petrović, Miloš; Veličković, Suzana; Radojević, Vesna; Vlahović, Branislav; Stajčić, Aleksandar

(MDPI, 2023)

TY  - JOUR
AU  - Stajčić, Ivana
AU  - Veljković, Filip
AU  - Petrović, Miloš
AU  - Veličković, Suzana
AU  - Radojević, Vesna
AU  - Vlahović, Branislav
AU  - Stajčić, Aleksandar
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7112
AB  - High performance polymers with bio-based modifiers are promising materials in terms of
applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier
for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation
of highly stable structures that were observed in scanning electron microscopy images as separate
phases at the fracture surface, which were involved in the toughening of the resin. Structural changes
were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis
confirmed the formation of products that were stable up to 600 ◦C, with a glass transition temperature
of 228 ◦C. An energy-controlled impact test was performed to compare the absorbed impact energy of
bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results
showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts
with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first
impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin.
In this manner, by using simple preparation and a raw material that is abundant in nature, a novel
epoxy with high thermal and impact resistance was obtained, opening a path for further research in
this field.
PB  - MDPI
T2  - Polymers
T1  - Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey
VL  - 15
IS  - 10
SP  - 2261
DO  - 10.3390/polym15102261
ER  - 
@article{
author = "Stajčić, Ivana and Veljković, Filip and Petrović, Miloš and Veličković, Suzana and Radojević, Vesna and Vlahović, Branislav and Stajčić, Aleksandar",
year = "2023",
abstract = "High performance polymers with bio-based modifiers are promising materials in terms of
applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier
for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation
of highly stable structures that were observed in scanning electron microscopy images as separate
phases at the fracture surface, which were involved in the toughening of the resin. Structural changes
were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis
confirmed the formation of products that were stable up to 600 ◦C, with a glass transition temperature
of 228 ◦C. An energy-controlled impact test was performed to compare the absorbed impact energy of
bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results
showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts
with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first
impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin.
In this manner, by using simple preparation and a raw material that is abundant in nature, a novel
epoxy with high thermal and impact resistance was obtained, opening a path for further research in
this field.",
publisher = "MDPI",
journal = "Polymers",
title = "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey",
volume = "15",
number = "10",
pages = "2261",
doi = "10.3390/polym15102261"
}
Stajčić, I., Veljković, F., Petrović, M., Veličković, S., Radojević, V., Vlahović, B.,& Stajčić, A.. (2023). Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers
MDPI., 15(10), 2261.
https://doi.org/10.3390/polym15102261
Stajčić I, Veljković F, Petrović M, Veličković S, Radojević V, Vlahović B, Stajčić A. Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers. 2023;15(10):2261.
doi:10.3390/polym15102261 .
Stajčić, Ivana, Veljković, Filip, Petrović, Miloš, Veličković, Suzana, Radojević, Vesna, Vlahović, Branislav, Stajčić, Aleksandar, "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey" in Polymers, 15, no. 10 (2023):2261,
https://doi.org/10.3390/polym15102261 . .
4
4

Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles

Salah Adeen Embirsh, Hifa; Stajčić, Ivana; Gržetić, Jelena; Mladenović, Ivana O.; Anđelković, Boban; Marinković, Aleksandar; Vuksanović, Marija M.

(MDPI, 2023)

TY  - JOUR
AU  - Salah Adeen Embirsh, Hifa
AU  - Stajčić, Ivana
AU  - Gržetić, Jelena
AU  - Mladenović, Ivana O.
AU  - Anđelković, Boban
AU  - Marinković, Aleksandar
AU  - Vuksanović, Marija M.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6610
AB  - This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol
(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained from
rice husk. The structural and morphological properties of the obtained particles, b-UPR, as well as
composites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic
resonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanical
properties of composites was supported by hardness modeling. Improvement of the tensile strength
of the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named
“b-UPR/SiO2
-V” composite, has been achieved with 88% increase. The thermal aging process applied
to the b-UPR/SiO2
-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).
The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of a
table top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, as
well as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainable
composites that are chemically synthesized from renewable sources is important from the aspect of
preserving the environment and existing resources as well as the extending their life cycle.
PB  - MDPI
T2  - Polymers
T1  - Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles
VL  - 15
IS  - 18
SP  - 3756
DO  - 10.3390/polym15183756
ER  - 
@article{
author = "Salah Adeen Embirsh, Hifa and Stajčić, Ivana and Gržetić, Jelena and Mladenović, Ivana O. and Anđelković, Boban and Marinković, Aleksandar and Vuksanović, Marija M.",
year = "2023",
abstract = "This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol
(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained from
rice husk. The structural and morphological properties of the obtained particles, b-UPR, as well as
composites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic
resonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanical
properties of composites was supported by hardness modeling. Improvement of the tensile strength
of the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named
“b-UPR/SiO2
-V” composite, has been achieved with 88% increase. The thermal aging process applied
to the b-UPR/SiO2
-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).
The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of a
table top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, as
well as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainable
composites that are chemically synthesized from renewable sources is important from the aspect of
preserving the environment and existing resources as well as the extending their life cycle.",
publisher = "MDPI",
journal = "Polymers",
title = "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles",
volume = "15",
number = "18",
pages = "3756",
doi = "10.3390/polym15183756"
}
Salah Adeen Embirsh, H., Stajčić, I., Gržetić, J., Mladenović, I. O., Anđelković, B., Marinković, A.,& Vuksanović, M. M.. (2023). Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers
MDPI., 15(18), 3756.
https://doi.org/10.3390/polym15183756
Salah Adeen Embirsh H, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers. 2023;15(18):3756.
doi:10.3390/polym15183756 .
Salah Adeen Embirsh, Hifa, Stajčić, Ivana, Gržetić, Jelena, Mladenović, Ivana O., Anđelković, Boban, Marinković, Aleksandar, Vuksanović, Marija M., "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles" in Polymers, 15, no. 18 (2023):3756,
https://doi.org/10.3390/polym15183756 . .
6

BaTiO3 visoke dielektrične konstante dobijen površinskom modifikacijom

Stajčić, Aleksandar; Stajčić, Ivana; Vorkapić, Miloš; Mladenović, Ivana

(University of Belgrade - Institute of Chemistry, Technology and Metallurgy, 2023)


                                            

                                            
Stajčić, A., Stajčić, I., Vorkapić, M.,& Mladenović, I.. (2023). BaTiO3 visoke dielektrične konstante dobijen površinskom modifikacijom. 
University of Belgrade - Institute of Chemistry, Technology and Metallurgy..
https://hdl.handle.net/21.15107/rcub_cer_7139
Stajčić A, Stajčić I, Vorkapić M, Mladenović I. BaTiO3 visoke dielektrične konstante dobijen površinskom modifikacijom. 2023;.
https://hdl.handle.net/21.15107/rcub_cer_7139 .
Stajčić, Aleksandar, Stajčić, Ivana, Vorkapić, Miloš, Mladenović, Ivana, "BaTiO3 visoke dielektrične konstante dobijen površinskom modifikacijom" (2023),
https://hdl.handle.net/21.15107/rcub_cer_7139 .

Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers

Vuksanović, Marija; Jovanović, Aleksandar A.; Milošević, Milena; Gržetić, Jelena; Stajčić, Ivana; Jančić-Heinemann, Radmila; Marinković, Aleksandar

(Beograd : Savez inženjera i tehničara Srbije, 2022)

TY  - JOUR
AU  - Vuksanović, Marija
AU  - Jovanović, Aleksandar A.
AU  - Milošević, Milena
AU  - Gržetić, Jelena
AU  - Stajčić, Ivana
AU  - Jančić-Heinemann, Radmila
AU  - Marinković, Aleksandar
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5628
AB  - Predmet ovog istraživanja je sinteza glikolizata iz recikliranog poli(etilen tereftalata) (PET) postupcima depolimerizacije pomoću dietilenglikoala (DEG) u prisustvu katalizatora FASCAT 4100. Dobijeni glikolizat je zatim tretiran anhidridom maleinske kiseline i na kraju 2-oktanolom (2-EtHex pri čemu se dobija 2-EtHex/MA/DEG/PET/EG/MA/2-EtHex plastifikator. Karakterizacija dobijenog plastifikatora izvršena je infracrvenom spektroskopijom sa Furijeovom transformacijom (FTIR) i NMR spektroskopijom. Dobijeni plastifikatori (10 tež. %) su umešani u bitumen a zatim u su izvršena ispitivanja mehaničkih svojstava dobijenih proizvoda.
AB  - The subject of this study is the synthesis of glycolysates from recycled poly (ethylene terephthalate) (PET) by depolymerization using diethylene glycol (DEG) in the presence of catalyst FASCAT 4100. The resulting glycolysate was then treated with maleic anhydride and finally with 2-octanol to obtain a 2-EtHex/MA/DEG/PET/EG/MA/2-EtHex plasticizer. The characterization of the obtained plasticizer was performed by infrared spectroscopy with Fourier transform (FTIR) and NMR spectroscopy. The obtained plasticizers were mixed into bitumen with 10 wt. % and tests of mechanical properties of obtained products were performed.
PB  - Beograd : Savez inženjera i tehničara Srbije
T2  - Tehnika
T1  - Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers
T1  - Ispitivanje mehaničkih svojstava bitumenskih proizvoda dobijenih korišćenjem plastifikatora na bazi polietilen tereftalat-a
VL  - 77
IS  - 5
SP  - 413
EP  - 417
DO  - 10.5937/tehnika2204413V
ER  - 
@article{
author = "Vuksanović, Marija and Jovanović, Aleksandar A. and Milošević, Milena and Gržetić, Jelena and Stajčić, Ivana and Jančić-Heinemann, Radmila and Marinković, Aleksandar",
year = "2022",
abstract = "Predmet ovog istraživanja je sinteza glikolizata iz recikliranog poli(etilen tereftalata) (PET) postupcima depolimerizacije pomoću dietilenglikoala (DEG) u prisustvu katalizatora FASCAT 4100. Dobijeni glikolizat je zatim tretiran anhidridom maleinske kiseline i na kraju 2-oktanolom (2-EtHex pri čemu se dobija 2-EtHex/MA/DEG/PET/EG/MA/2-EtHex plastifikator. Karakterizacija dobijenog plastifikatora izvršena je infracrvenom spektroskopijom sa Furijeovom transformacijom (FTIR) i NMR spektroskopijom. Dobijeni plastifikatori (10 tež. %) su umešani u bitumen a zatim u su izvršena ispitivanja mehaničkih svojstava dobijenih proizvoda., The subject of this study is the synthesis of glycolysates from recycled poly (ethylene terephthalate) (PET) by depolymerization using diethylene glycol (DEG) in the presence of catalyst FASCAT 4100. The resulting glycolysate was then treated with maleic anhydride and finally with 2-octanol to obtain a 2-EtHex/MA/DEG/PET/EG/MA/2-EtHex plasticizer. The characterization of the obtained plasticizer was performed by infrared spectroscopy with Fourier transform (FTIR) and NMR spectroscopy. The obtained plasticizers were mixed into bitumen with 10 wt. % and tests of mechanical properties of obtained products were performed.",
publisher = "Beograd : Savez inženjera i tehničara Srbije",
journal = "Tehnika",
title = "Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers, Ispitivanje mehaničkih svojstava bitumenskih proizvoda dobijenih korišćenjem plastifikatora na bazi polietilen tereftalat-a",
volume = "77",
number = "5",
pages = "413-417",
doi = "10.5937/tehnika2204413V"
}
Vuksanović, M., Jovanović, A. A., Milošević, M., Gržetić, J., Stajčić, I., Jančić-Heinemann, R.,& Marinković, A.. (2022). Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers. in Tehnika
Beograd : Savez inženjera i tehničara Srbije., 77(5), 413-417.
https://doi.org/10.5937/tehnika2204413V
Vuksanović M, Jovanović AA, Milošević M, Gržetić J, Stajčić I, Jančić-Heinemann R, Marinković A. Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers. in Tehnika. 2022;77(5):413-417.
doi:10.5937/tehnika2204413V .
Vuksanović, Marija, Jovanović, Aleksandar A., Milošević, Milena, Gržetić, Jelena, Stajčić, Ivana, Jančić-Heinemann, Radmila, Marinković, Aleksandar, "Testing of mechanical properties of bitumen products obtained using polyethylene tereftalate-based plastifiers" in Tehnika, 77, no. 5 (2022):413-417,
https://doi.org/10.5937/tehnika2204413V . .
1

Microstructure of Epoxy-Based Composites: Fractal Nature Analysis

Stajčić, Ivana; Stajčić, Aleksandar; Serpa, Cristina; Vasiljević-Radović, Dana; Randjelović, Branislav; Radojević, Vesna; Fecht, Hans

(MDPI, 2022)

TY  - JOUR
AU  - Stajčić, Ivana
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Vasiljević-Radović, Dana
AU  - Randjelović, Branislav
AU  - Radojević, Vesna
AU  - Fecht, Hans
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5571
AB  - Polymers and polymer matrix composites are commonly used materials with applications extending from packaging materials to delicate electronic devices. Epoxy resins and fiber-reinforced epoxy-based composites have been used as adhesives and construction parts. Fractal analysis has been recognized in materials science as a valuable tool for the microstructural characterization of composites by connecting fractal characteristics with composites’ functional properties. In this study, fractal reconstructions of different microstructural shapes in an epoxy-based composite were performed on field emission scanning electron microscopy (FESEM) images. These images were of glass fiber reinforced epoxy as well as a hybrid composite containing both glass and electrospun polystyrene fibers in an epoxy matrix. Fractal reconstruction enables the identification of self-similarity in the fractal structure, which represents a novelty in analyzing the fractal properties of materials. Fractal Real Finder software, based on the mathematical affine fractal regression model, was employed to reconstruct different microstructure shapes and calculate fractal dimensions to develop a method of predicting the optimal structure–property relations in composite materials in the future.
PB  - MDPI
T2  - Fractal and Fractional
T1  - Microstructure of Epoxy-Based Composites: Fractal Nature Analysis
VL  - 6
IS  - 12
SP  - 741
DO  - 10.3390/fractalfract6120741
ER  - 
@article{
author = "Stajčić, Ivana and Stajčić, Aleksandar and Serpa, Cristina and Vasiljević-Radović, Dana and Randjelović, Branislav and Radojević, Vesna and Fecht, Hans",
year = "2022",
abstract = "Polymers and polymer matrix composites are commonly used materials with applications extending from packaging materials to delicate electronic devices. Epoxy resins and fiber-reinforced epoxy-based composites have been used as adhesives and construction parts. Fractal analysis has been recognized in materials science as a valuable tool for the microstructural characterization of composites by connecting fractal characteristics with composites’ functional properties. In this study, fractal reconstructions of different microstructural shapes in an epoxy-based composite were performed on field emission scanning electron microscopy (FESEM) images. These images were of glass fiber reinforced epoxy as well as a hybrid composite containing both glass and electrospun polystyrene fibers in an epoxy matrix. Fractal reconstruction enables the identification of self-similarity in the fractal structure, which represents a novelty in analyzing the fractal properties of materials. Fractal Real Finder software, based on the mathematical affine fractal regression model, was employed to reconstruct different microstructure shapes and calculate fractal dimensions to develop a method of predicting the optimal structure–property relations in composite materials in the future.",
publisher = "MDPI",
journal = "Fractal and Fractional",
title = "Microstructure of Epoxy-Based Composites: Fractal Nature Analysis",
volume = "6",
number = "12",
pages = "741",
doi = "10.3390/fractalfract6120741"
}
Stajčić, I., Stajčić, A., Serpa, C., Vasiljević-Radović, D., Randjelović, B., Radojević, V.,& Fecht, H.. (2022). Microstructure of Epoxy-Based Composites: Fractal Nature Analysis. in Fractal and Fractional
MDPI., 6(12), 741.
https://doi.org/10.3390/fractalfract6120741
Stajčić I, Stajčić A, Serpa C, Vasiljević-Radović D, Randjelović B, Radojević V, Fecht H. Microstructure of Epoxy-Based Composites: Fractal Nature Analysis. in Fractal and Fractional. 2022;6(12):741.
doi:10.3390/fractalfract6120741 .
Stajčić, Ivana, Stajčić, Aleksandar, Serpa, Cristina, Vasiljević-Radović, Dana, Randjelović, Branislav, Radojević, Vesna, Fecht, Hans, "Microstructure of Epoxy-Based Composites: Fractal Nature Analysis" in Fractal and Fractional, 6, no. 12 (2022):741,
https://doi.org/10.3390/fractalfract6120741 . .
2
2

Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics

Stajčić, Aleksandar; Stajčić, Ivana; Mitic, Vojislav; Lu, Chun-An; Vlahovic, Branislav; Vasiljević-Radović, Dana

(World Scientific Publishing, 2022)

TY  - JOUR
AU  - Stajčić, Aleksandar
AU  - Stajčić, Ivana
AU  - Mitic, Vojislav
AU  - Lu, Chun-An
AU  - Vlahovic, Branislav
AU  - Vasiljević-Radović, Dana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5631
AB  - BaTiO3 (BTO) is considered the most commonly used ceramic material in multilayer
ceramic capacitors due to its desirable dielectric properties. Considering that the miniaturization of electronic devices represents an expanding field of research, modification
of BTO has been performed to increase dielectric constant and DC bias characteristic/sensitivity. This research presents the effect of N2 and air atmospheres on morphological and dielectric properties of BTO nanoparticles modified with organometallic salt
at sintering temperatures of 1200◦C, 1250◦C, 1300◦C, and 1350◦C. Measured dielectric
constants were up to 35,000, with achieved very high values in both atmospheres. Field
emission scanning electron microscopy (FESEM) was used for morphological characterization, revealing a porous structure in all the samples. The software image analysis
of FESEM images showed a connection between particle and pore size distribution, as
well as porosity. Based on the data from the image analysis, the prediction of dielectric
properties in relation to morphology indicated that yttrium-based organometallic salt
reduced oxygen vacancy generation in N2 atmosphere. DC bias sensitivity measurements
showed that samples with higher dielectric constant had more pronounced sensitivity to
voltage change, but most of the samples were stable up to 100 V, making our modified
BTO a promising candidate for capacitors.
PB  - World Scientific Publishing
T2  - Modern Physics Letters B
T1  - Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics
VL  - 36
IS  - 19
SP  - 2250060
DO  - 10.1142/S0217984922500609
ER  - 
@article{
author = "Stajčić, Aleksandar and Stajčić, Ivana and Mitic, Vojislav and Lu, Chun-An and Vlahovic, Branislav and Vasiljević-Radović, Dana",
year = "2022",
abstract = "BaTiO3 (BTO) is considered the most commonly used ceramic material in multilayer
ceramic capacitors due to its desirable dielectric properties. Considering that the miniaturization of electronic devices represents an expanding field of research, modification
of BTO has been performed to increase dielectric constant and DC bias characteristic/sensitivity. This research presents the effect of N2 and air atmospheres on morphological and dielectric properties of BTO nanoparticles modified with organometallic salt
at sintering temperatures of 1200◦C, 1250◦C, 1300◦C, and 1350◦C. Measured dielectric
constants were up to 35,000, with achieved very high values in both atmospheres. Field
emission scanning electron microscopy (FESEM) was used for morphological characterization, revealing a porous structure in all the samples. The software image analysis
of FESEM images showed a connection between particle and pore size distribution, as
well as porosity. Based on the data from the image analysis, the prediction of dielectric
properties in relation to morphology indicated that yttrium-based organometallic salt
reduced oxygen vacancy generation in N2 atmosphere. DC bias sensitivity measurements
showed that samples with higher dielectric constant had more pronounced sensitivity to
voltage change, but most of the samples were stable up to 100 V, making our modified
BTO a promising candidate for capacitors.",
publisher = "World Scientific Publishing",
journal = "Modern Physics Letters B",
title = "Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics",
volume = "36",
number = "19",
pages = "2250060",
doi = "10.1142/S0217984922500609"
}
Stajčić, A., Stajčić, I., Mitic, V., Lu, C., Vlahovic, B.,& Vasiljević-Radović, D.. (2022). Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics. in Modern Physics Letters B
World Scientific Publishing., 36(19), 2250060.
https://doi.org/10.1142/S0217984922500609
Stajčić A, Stajčić I, Mitic V, Lu C, Vlahovic B, Vasiljević-Radović D. Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics. in Modern Physics Letters B. 2022;36(19):2250060.
doi:10.1142/S0217984922500609 .
Stajčić, Aleksandar, Stajčić, Ivana, Mitic, Vojislav, Lu, Chun-An, Vlahovic, Branislav, Vasiljević-Radović, Dana, "Sintering parameters influence on dielectric properties of modified nano-BaTiO3 ceramics" in Modern Physics Letters B, 36, no. 19 (2022):2250060,
https://doi.org/10.1142/S0217984922500609 . .
1
1

Reconstruction of fiber reinforcement in epoxy-based composite

Stajčić, Aleksandar; Mitić, Vojislav; Serpa, Cristina; Randjelović, Branislav; Radović, Ivana

(Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering, 2021)

TY  - CONF
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav
AU  - Serpa, Cristina
AU  - Randjelović, Branislav
AU  - Radović, Ivana
PY  - 2021
UR  - https://www.etran.rs/2021/en/proceedings/
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4925
AB  - Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.
PB  - Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering
C3  - Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
T1  - Reconstruction of fiber reinforcement in epoxy-based composite
UR  - https://hdl.handle.net/21.15107/rcub_cer_4925
ER  - 
@conference{
author = "Stajčić, Aleksandar and Mitić, Vojislav and Serpa, Cristina and Randjelović, Branislav and Radović, Ivana",
year = "2021",
abstract = "Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.",
publisher = "Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering",
journal = "Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020",
title = "Reconstruction of fiber reinforcement in epoxy-based composite",
url = "https://hdl.handle.net/21.15107/rcub_cer_4925"
}
Stajčić, A., Mitić, V., Serpa, C., Randjelović, B.,& Radović, I.. (2021). Reconstruction of fiber reinforcement in epoxy-based composite. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering..
https://hdl.handle.net/21.15107/rcub_cer_4925
Stajčić A, Mitić V, Serpa C, Randjelović B, Radović I. Reconstruction of fiber reinforcement in epoxy-based composite. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020. 2021;.
https://hdl.handle.net/21.15107/rcub_cer_4925 .
Stajčić, Aleksandar, Mitić, Vojislav, Serpa, Cristina, Randjelović, Branislav, Radović, Ivana, "Reconstruction of fiber reinforcement in epoxy-based composite" in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020 (2021),
https://hdl.handle.net/21.15107/rcub_cer_4925 .

Fractal reconstruction of fiber-reinforced polymer composites

Radović, Ivana; Mitić, Vojislav V.; Stajčić, Aleksandar; Serpa, Cristina; Ribar, Srđan; Ranđelović, Branislav; Vlahović, Branislav

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Radović, Ivana
AU  - Mitić, Vojislav V.
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Ribar, Srđan
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4899
AB  - Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.
PB  - Belgrade : Serbian Chemical Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
T1  - Fractal reconstruction of fiber-reinforced polymer composites
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_12361
ER  - 
@conference{
author = "Radović, Ivana and Mitić, Vojislav V. and Stajčić, Aleksandar and Serpa, Cristina and Ribar, Srđan and Ranđelović, Branislav and Vlahović, Branislav",
year = "2021",
abstract = "Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing",
title = "Fractal reconstruction of fiber-reinforced polymer composites",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_12361"
}
Radović, I., Mitić, V. V., Stajčić, A., Serpa, C., Ribar, S., Ranđelović, B.,& Vlahović, B.. (2021). Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
Belgrade : Serbian Chemical Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361
Radović I, Mitić VV, Stajčić A, Serpa C, Ribar S, Ranđelović B, Vlahović B. Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361 .
Radović, Ivana, Mitić, Vojislav V., Stajčić, Aleksandar, Serpa, Cristina, Ribar, Srđan, Ranđelović, Branislav, Vlahović, Branislav, "Fractal reconstruction of fiber-reinforced polymer composites" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing (2021):49-49,
https://hdl.handle.net/21.15107/rcub_dais_12361 .

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4837
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
VL  - 570
IS  - 1
SP  - 145
EP  - 152
DO  - 10.1080/00150193.2020.1839265
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
volume = "570",
number = "1",
pages = "145-152",
doi = "10.1080/00150193.2020.1839265"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 . .
15
4
15

Solvent effects on structural changes in self-healing epoxy composites

Radović, Ivana; Stajčić, Aleksandar; Radisavljević, Andjela; Veljković, Filip; Čebela, Maria; Mitić, Vojislav V.; Radojević, Vesna

(Elsevier, 2020)

TY  - JOUR
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Radisavljević, Andjela
AU  - Veljković, Filip
AU  - Čebela, Maria
AU  - Mitić, Vojislav V.
AU  - Radojević, Vesna
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3676
AB  - Nowadays, there is a very high importance of composite research and variety of their applications in the modern world. In that sense, we researched hollow glass capillaries filled with dissolved Grubbs catalyst (GC) and dicyclopentadiene (DCPD) were incorporated into a fiber-reinforced epoxy with the aim of improving the flow of healing agents to the crack site. The morphological investigation of the crack site was performed using field emission scanning electron microscopy (FESEM), showing the difference between the samples depending on the used solvent. The software analysis of sample photographs has been performed by calculating the fractured/ healed surface area of the samples, revealing that approximately 20% of the volume was affected by the impact. Fourier transform infrared spectroscopy (FTIR) revealed that poly (dicyclopentadiene) (PDCPD) formed at the healed interface. However, the FTIR investigation of catalyst stability in different solvents showed structural changes in GC and partial deactivation. The mechanical tests of the samples showed that a recovery of 60% after 24 h at room temperature could be achieved through the use of a solvent and very low concentration of GC. The performed research results are a good base to develop the model for predicting the processes and morphology, with the goal to design the final mechanical and in the future, thermal, properties in advance. This opens a new direction for future research in the field of composite healing.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Solvent effects on structural changes in self-healing epoxy composites
VL  - 256
SP  - 123761
DO  - 10.1016/j.matchemphys.2020.123761
ER  - 
@article{
author = "Radović, Ivana and Stajčić, Aleksandar and Radisavljević, Andjela and Veljković, Filip and Čebela, Maria and Mitić, Vojislav V. and Radojević, Vesna",
year = "2020",
abstract = "Nowadays, there is a very high importance of composite research and variety of their applications in the modern world. In that sense, we researched hollow glass capillaries filled with dissolved Grubbs catalyst (GC) and dicyclopentadiene (DCPD) were incorporated into a fiber-reinforced epoxy with the aim of improving the flow of healing agents to the crack site. The morphological investigation of the crack site was performed using field emission scanning electron microscopy (FESEM), showing the difference between the samples depending on the used solvent. The software analysis of sample photographs has been performed by calculating the fractured/ healed surface area of the samples, revealing that approximately 20% of the volume was affected by the impact. Fourier transform infrared spectroscopy (FTIR) revealed that poly (dicyclopentadiene) (PDCPD) formed at the healed interface. However, the FTIR investigation of catalyst stability in different solvents showed structural changes in GC and partial deactivation. The mechanical tests of the samples showed that a recovery of 60% after 24 h at room temperature could be achieved through the use of a solvent and very low concentration of GC. The performed research results are a good base to develop the model for predicting the processes and morphology, with the goal to design the final mechanical and in the future, thermal, properties in advance. This opens a new direction for future research in the field of composite healing.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Solvent effects on structural changes in self-healing epoxy composites",
volume = "256",
pages = "123761",
doi = "10.1016/j.matchemphys.2020.123761"
}
Radović, I., Stajčić, A., Radisavljević, A., Veljković, F., Čebela, M., Mitić, V. V.,& Radojević, V.. (2020). Solvent effects on structural changes in self-healing epoxy composites. in Materials Chemistry and Physics
Elsevier., 256, 123761.
https://doi.org/10.1016/j.matchemphys.2020.123761
Radović I, Stajčić A, Radisavljević A, Veljković F, Čebela M, Mitić VV, Radojević V. Solvent effects on structural changes in self-healing epoxy composites. in Materials Chemistry and Physics. 2020;256:123761.
doi:10.1016/j.matchemphys.2020.123761 .
Radović, Ivana, Stajčić, Aleksandar, Radisavljević, Andjela, Veljković, Filip, Čebela, Maria, Mitić, Vojislav V., Radojević, Vesna, "Solvent effects on structural changes in self-healing epoxy composites" in Materials Chemistry and Physics, 256 (2020):123761,
https://doi.org/10.1016/j.matchemphys.2020.123761 . .
16
2
14

Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds

Dodevski, Vladimir; Janković, Bojan; Radović, Ivana; Stojmenović, Marija; Čebela, Maria; Nikolić, Željka; Pagnacco, Maja; Panić, Ivan; Stanković, Miroslav

(SAGE Publications, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Janković, Bojan
AU  - Radović, Ivana
AU  - Stojmenović, Marija
AU  - Čebela, Maria
AU  - Nikolić, Željka
AU  - Pagnacco, Maja
AU  - Panić, Ivan
AU  - Stanković, Miroslav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3230
AB  - In this work, plane tree seed-based activated carbons were characterized in detail for a variety of applications. The particularly important area of application would be in the artificial photosynthesis. After carbonization process of biomass precursor at 650°C, the resulting preliminary activated carbons were activated at various temperatures. The activated carbons were characterized by oxygen functionalities (a particularly important role has ester oxygen groups) which provide a unique microstructure. The chemical compositions of as-prepared activated carbons were analyzed through Fourier transform infrared and Raman spectra as well as gas chromatography–mass spectroscopy analysis, while morphology was observed by scanning electron microscopy analysis. Applied analysis showed that detected graphite mainly becomes uniformly nanocrystalline system. The current study also explored the applicability of carbon material obtained from plane tree seed as a potential gaseous adsorbent. The characterization showed that the tested material contains both mesopores and micropores, and this should be advantageous for the gas sorption process, since mesopores may provide low-resistant pathways for the diffusion of CO2 molecules, while the micropores are the most suitable for trapping of CO2. The sorption process analysis (including adsorption/desorption isotherms behavior) shows indication that the rate-limiting step of CO2 adsorption onto activated carbon is probably governed by diffusion-controlled process, especially at temperatures below 850°C.
PB  - SAGE Publications
T2  - Energy & Environment
T1  - Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds
VL  - 31
IS  - 4
SP  - 583
EP  - 612
DO  - 10.1177/0958305X19880878
ER  - 
@article{
author = "Dodevski, Vladimir and Janković, Bojan and Radović, Ivana and Stojmenović, Marija and Čebela, Maria and Nikolić, Željka and Pagnacco, Maja and Panić, Ivan and Stanković, Miroslav",
year = "2020",
abstract = "In this work, plane tree seed-based activated carbons were characterized in detail for a variety of applications. The particularly important area of application would be in the artificial photosynthesis. After carbonization process of biomass precursor at 650°C, the resulting preliminary activated carbons were activated at various temperatures. The activated carbons were characterized by oxygen functionalities (a particularly important role has ester oxygen groups) which provide a unique microstructure. The chemical compositions of as-prepared activated carbons were analyzed through Fourier transform infrared and Raman spectra as well as gas chromatography–mass spectroscopy analysis, while morphology was observed by scanning electron microscopy analysis. Applied analysis showed that detected graphite mainly becomes uniformly nanocrystalline system. The current study also explored the applicability of carbon material obtained from plane tree seed as a potential gaseous adsorbent. The characterization showed that the tested material contains both mesopores and micropores, and this should be advantageous for the gas sorption process, since mesopores may provide low-resistant pathways for the diffusion of CO2 molecules, while the micropores are the most suitable for trapping of CO2. The sorption process analysis (including adsorption/desorption isotherms behavior) shows indication that the rate-limiting step of CO2 adsorption onto activated carbon is probably governed by diffusion-controlled process, especially at temperatures below 850°C.",
publisher = "SAGE Publications",
journal = "Energy & Environment",
title = "Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds",
volume = "31",
number = "4",
pages = "583-612",
doi = "10.1177/0958305X19880878"
}
Dodevski, V., Janković, B., Radović, I., Stojmenović, M., Čebela, M., Nikolić, Ž., Pagnacco, M., Panić, I.,& Stanković, M.. (2020). Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds. in Energy & Environment
SAGE Publications., 31(4), 583-612.
https://doi.org/10.1177/0958305X19880878
Dodevski V, Janković B, Radović I, Stojmenović M, Čebela M, Nikolić Ž, Pagnacco M, Panić I, Stanković M. Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds. in Energy & Environment. 2020;31(4):583-612.
doi:10.1177/0958305X19880878 .
Dodevski, Vladimir, Janković, Bojan, Radović, Ivana, Stojmenović, Marija, Čebela, Maria, Nikolić, Željka, Pagnacco, Maja, Panić, Ivan, Stanković, Miroslav, "Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds" in Energy & Environment, 31, no. 4 (2020):583-612,
https://doi.org/10.1177/0958305X19880878 . .
9
2
9

Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization

Dodevski, Vladimir; Pagnacco, Maja; Radović, Ivana; Rosić, Milena; Janković, Bojan; Stojmenović, Marija; Mitić, Vojislav V.

(Elsevier, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Pagnacco, Maja
AU  - Radović, Ivana
AU  - Rosić, Milena
AU  - Janković, Bojan
AU  - Stojmenović, Marija
AU  - Mitić, Vojislav V.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3436
AB  - The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization
VL  - 245
SP  - 122768
DO  - 10.1016/j.matchemphys.2020.122768
ER  - 
@article{
author = "Dodevski, Vladimir and Pagnacco, Maja and Radović, Ivana and Rosić, Milena and Janković, Bojan and Stojmenović, Marija and Mitić, Vojislav V.",
year = "2020",
abstract = "The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization",
volume = "245",
pages = "122768",
doi = "10.1016/j.matchemphys.2020.122768"
}
Dodevski, V., Pagnacco, M., Radović, I., Rosić, M., Janković, B., Stojmenović, M.,& Mitić, V. V.. (2020). Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics
Elsevier., 245, 122768.
https://doi.org/10.1016/j.matchemphys.2020.122768
Dodevski V, Pagnacco M, Radović I, Rosić M, Janković B, Stojmenović M, Mitić VV. Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics. 2020;245:122768.
doi:10.1016/j.matchemphys.2020.122768 .
Dodevski, Vladimir, Pagnacco, Maja, Radović, Ivana, Rosić, Milena, Janković, Bojan, Stojmenović, Marija, Mitić, Vojislav V., "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization" in Materials Chemistry and Physics, 245 (2020):122768,
https://doi.org/10.1016/j.matchemphys.2020.122768 . .
1
10
4
9

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3584
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.
PB  - MDPI
T2  - Applied Sciences
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
VL  - 10
SP  - 3485
DO  - 10.3390/app10103485
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.",
publisher = "MDPI",
journal = "Applied Sciences",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
volume = "10",
pages = "3485",
doi = "10.3390/app10103485"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences
MDPI., 10, 3485.
https://doi.org/10.3390/app10103485
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences. 2020;10:3485.
doi:10.3390/app10103485 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" in Applied Sciences, 10 (2020):3485,
https://doi.org/10.3390/app10103485 . .
4
1
4

The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination

Mitić, Vojislav V.; Lazović, Goran; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Fecht, Hans; Vlahović, Branislav

(Taylor & Francis, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Fecht, Hans
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4004
AB  - This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.
PB  - Taylor & Francis
T2  - Integrated Ferroelectrics
T1  - The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination
VL  - 212
IS  - 1
SP  - 135
EP  - 146
DO  - 10.1080/10584587.2020.1819042
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Fecht, Hans and Vlahović, Branislav",
year = "2020",
abstract = "This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.",
publisher = "Taylor & Francis",
journal = "Integrated Ferroelectrics",
title = "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination",
volume = "212",
number = "1",
pages = "135-146",
doi = "10.1080/10584587.2020.1819042"
}
Mitić, V. V., Lazović, G., Ribar, S., Lu, C., Radović, I., Stajčić, A., Fecht, H.,& Vlahović, B.. (2020). The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics
Taylor & Francis., 212(1), 135-146.
https://doi.org/10.1080/10584587.2020.1819042
Mitić VV, Lazović G, Ribar S, Lu C, Radović I, Stajčić A, Fecht H, Vlahović B. The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics. 2020;212(1):135-146.
doi:10.1080/10584587.2020.1819042 .
Mitić, Vojislav V., Lazović, Goran, Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Fecht, Hans, Vlahović, Branislav, "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination" in Integrated Ferroelectrics, 212, no. 1 (2020):135-146,
https://doi.org/10.1080/10584587.2020.1819042 . .
11
4
10

Ceramics, materials, microelectronics and graph theory new frontiers

Radjenovic, Branislav; Mitić, Vojislav V.; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Novaković, Igor; Vlahović, Branislav

(World Scientific, 2020)

TY  - JOUR
AU  - Radjenovic, Branislav
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4005
AB  - This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.
PB  - World Scientific
T2  - Modern Physics Letters B
T1  - Ceramics, materials, microelectronics and graph theory new frontiers
SP  - 2150159
DO  - 10.1142/S0217984921501591
ER  - 
@article{
author = "Radjenovic, Branislav and Mitić, Vojislav V. and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.",
publisher = "World Scientific",
journal = "Modern Physics Letters B",
title = "Ceramics, materials, microelectronics and graph theory new frontiers",
pages = "2150159",
doi = "10.1142/S0217984921501591"
}
Radjenovic, B., Mitić, V. V., Ribar, S., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B
World Scientific., 2150159.
https://doi.org/10.1142/S0217984921501591
Radjenovic B, Mitić VV, Ribar S, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B. 2020;:2150159.
doi:10.1142/S0217984921501591 .
Radjenovic, Branislav, Mitić, Vojislav V., Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Ceramics, materials, microelectronics and graph theory new frontiers" in Modern Physics Letters B (2020):2150159,
https://doi.org/10.1142/S0217984921501591 . .
10
5

Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage

Mitić, Vojislav V.; Ribar, Srđan; Randjelović, Branislav M.; Lu, Chunan; Radović, Ivana; Stajčić, Aleksandar; Novaković, Igor; Vlahović, Branislav

(World Scientific, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Randjelović, Branislav M.
AU  - Lu, Chunan
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4242
AB  - This research is based on the idea to design the interface structure around the grains and thin layers between two grains, as a possible solution for deep microelectronic parameters integrations. The experiments have been based on nano-BaTiO3 powders with Y-based additive. The advanced idea is to create the new observed directions to network microelectronic characteristics in thin films coated around and between the grains on the way to get and compare with global results on the samples. Biomimetic similarities are artificial neural networks which could be original method and tools that we use to map input-output data and could be applied on ceramics microelectronic parameters. This mapping is developed in the manner like signals that are processed in real biological neural networks. These signals are processed by using artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which represents sensitivity to inputs. The integrated network output presents practically the large number of inner neurons outputs sum. This original idea is to connect analysis results and neural networks. It is of the great importance to connect microcapacitances by neural network with the goal to compare the experimental results in the bulk samples measurements and microelectronics parameters. The result of these researches is the study of functional relation definition between consolidation parameters, voltage (U), consolidation sintering temperature and relative capacitance change, from the bulk sample surface down to the coating thin films around the grains.
PB  - World Scientific
T2  - Modern Physics Letters B
T1  - Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage
VL  - 34
IS  - 35
SP  - 2150172
DO  - 10.1142/S0217984921501724
ER  - 
@article{
author = "Mitić, Vojislav V. and Ribar, Srđan and Randjelović, Branislav M. and Lu, Chunan and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is based on the idea to design the interface structure around the grains and thin layers between two grains, as a possible solution for deep microelectronic parameters integrations. The experiments have been based on nano-BaTiO3 powders with Y-based additive. The advanced idea is to create the new observed directions to network microelectronic characteristics in thin films coated around and between the grains on the way to get and compare with global results on the samples. Biomimetic similarities are artificial neural networks which could be original method and tools that we use to map input-output data and could be applied on ceramics microelectronic parameters. This mapping is developed in the manner like signals that are processed in real biological neural networks. These signals are processed by using artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which represents sensitivity to inputs. The integrated network output presents practically the large number of inner neurons outputs sum. This original idea is to connect analysis results and neural networks. It is of the great importance to connect microcapacitances by neural network with the goal to compare the experimental results in the bulk samples measurements and microelectronics parameters. The result of these researches is the study of functional relation definition between consolidation parameters, voltage (U), consolidation sintering temperature and relative capacitance change, from the bulk sample surface down to the coating thin films around the grains.",
publisher = "World Scientific",
journal = "Modern Physics Letters B",
title = "Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage",
volume = "34",
number = "35",
pages = "2150172",
doi = "10.1142/S0217984921501724"
}
Mitić, V. V., Ribar, S., Randjelović, B. M., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage. in Modern Physics Letters B
World Scientific., 34(35), 2150172.
https://doi.org/10.1142/S0217984921501724
Mitić VV, Ribar S, Randjelović BM, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage. in Modern Physics Letters B. 2020;34(35):2150172.
doi:10.1142/S0217984921501724 .
Mitić, Vojislav V., Ribar, Srđan, Randjelović, Branislav M., Lu, Chunan, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage" in Modern Physics Letters B, 34, no. 35 (2020):2150172,
https://doi.org/10.1142/S0217984921501724 . .
13
4
13

The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites

Stajčić, Aleksandar; Radović, Ivana; Ćosović, Vladan; Grujić, Aleksandar; Stajić-Trošić, Jasna; Jančić-Heinemann, Radmila

(Belgrade : Association for ETRAN Society, 2019)

TY  - JOUR
AU  - Stajčić, Aleksandar
AU  - Radović, Ivana
AU  - Ćosović, Vladan
AU  - Grujić, Aleksandar
AU  - Stajić-Trošić, Jasna
AU  - Jančić-Heinemann, Radmila
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3232
AB  - This study presents preparation and characterization of ethyl cellulose based nanocomposites. Successful use of simple solvent casting technique provided nanocomposites with high loads of barium ferrite magnetic nanopowder in the polymer matrix, promising significant improvement of mechanical properties. Investigation of morphology revealed formation of agglomerates that are still on nanoscopic level. Nanocomposite thin films with a higher content of the magnetic powder showed substantial enhancement of break strength, elongation and microhardness compared to the pure ethyl cellulose, which was the primary aim of this research.
AB  - Ова студија представља припрему и карактеризацију нанокомпозита на бази етил целулозе. Успешна употреба једноставне технике изливања обезбедила је нанокомпозите са великим уделом магнетног нанопраха баријум ферита у полимерној матрици, обећавајући значајно побољшање механичких својстава. Истраживањем морфологије откривено је формирање агломерата који су и даље на наноскопском нивоу. Нанокомпозитни танки филмови са већим садржајем магнетног праха показали су значајно повећање прекидне чврстоће, издужења и микротврдоће у поређењу са чистом етил целулозом, што је био главни циљ овог истраживања.
PB  - Belgrade : Association for ETRAN Society
T2  - Science of Sintering
T1  - The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites
VL  - 51
IS  - 3
SP  - 277
EP  - 283
DO  - 10.2298/SOS1903277S
ER  - 
@article{
author = "Stajčić, Aleksandar and Radović, Ivana and Ćosović, Vladan and Grujić, Aleksandar and Stajić-Trošić, Jasna and Jančić-Heinemann, Radmila",
year = "2019",
abstract = "This study presents preparation and characterization of ethyl cellulose based nanocomposites. Successful use of simple solvent casting technique provided nanocomposites with high loads of barium ferrite magnetic nanopowder in the polymer matrix, promising significant improvement of mechanical properties. Investigation of morphology revealed formation of agglomerates that are still on nanoscopic level. Nanocomposite thin films with a higher content of the magnetic powder showed substantial enhancement of break strength, elongation and microhardness compared to the pure ethyl cellulose, which was the primary aim of this research., Ова студија представља припрему и карактеризацију нанокомпозита на бази етил целулозе. Успешна употреба једноставне технике изливања обезбедила је нанокомпозите са великим уделом магнетног нанопраха баријум ферита у полимерној матрици, обећавајући значајно побољшање механичких својстава. Истраживањем морфологије откривено је формирање агломерата који су и даље на наноскопском нивоу. Нанокомпозитни танки филмови са већим садржајем магнетног праха показали су значајно повећање прекидне чврстоће, издужења и микротврдоће у поређењу са чистом етил целулозом, што је био главни циљ овог истраживања.",
publisher = "Belgrade : Association for ETRAN Society",
journal = "Science of Sintering",
title = "The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites",
volume = "51",
number = "3",
pages = "277-283",
doi = "10.2298/SOS1903277S"
}
Stajčić, A., Radović, I., Ćosović, V., Grujić, A., Stajić-Trošić, J.,& Jančić-Heinemann, R.. (2019). The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites. in Science of Sintering
Belgrade : Association for ETRAN Society., 51(3), 277-283.
https://doi.org/10.2298/SOS1903277S
Stajčić A, Radović I, Ćosović V, Grujić A, Stajić-Trošić J, Jančić-Heinemann R. The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites. in Science of Sintering. 2019;51(3):277-283.
doi:10.2298/SOS1903277S .
Stajčić, Aleksandar, Radović, Ivana, Ćosović, Vladan, Grujić, Aleksandar, Stajić-Trošić, Jasna, Jančić-Heinemann, Radmila, "The influence of barium ferrite nanoparticles on morphological and mechanical properties of ethyl cellulose based nanocomposites" in Science of Sintering, 51, no. 3 (2019):277-283,
https://doi.org/10.2298/SOS1903277S . .
2
3
4

Adsorption kinetics of polyethersulfone membrane-supported hydrogels

Stajčić, Aleksandar; Nedeljković, Dragutin; Panić, Vesna; Radović, Ivana; Grujić, Aleksandar; Stajić-Trošić, Jasna; Jančić-Heinemann, Radmila

(Hopkinton : Desalination Publications, 2018)

TY  - JOUR
AU  - Stajčić, Aleksandar
AU  - Nedeljković, Dragutin
AU  - Panić, Vesna
AU  - Radović, Ivana
AU  - Grujić, Aleksandar
AU  - Stajić-Trošić, Jasna
AU  - Jančić-Heinemann, Radmila
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2359
AB  - This study presents the route for preparation of the membrane-supporting materials with good mechanical behavior and adsorption properties that provide functionality and are easy to use in various environments. Polyethersulfone (PES) membrane-supported hydrogels were prepared via liquid phase inversion process with photopolymerization and monomer crosslinking. The obtained membranes had asymmetric structure containing dense skin on the top of a porous hydrogel as it is verified by scanning electron microscopy. Software analysis of the pore size revealed that fine pores enabled availability of the membrane active centers to metal cations. The membranes with a higher content of the polymer showed significantly improved mechanical properties compared with commonly used ion exchange membranes, which is crucial for the wastewater treatment application. Adsorption kinetics analysis showed that the hydrogel-rich bottom layer has significantly higher adsorption ability in comparison to the top layer. Adsorption kinetics of the bottom side was described by the first-order kinetics model, whereas for the the top side, phase-boundary controlled reaction model was used.
PB  - Hopkinton : Desalination Publications
T2  - Desalination and Water Treatment
T1  - Adsorption kinetics of polyethersulfone membrane-supported hydrogels
VL  - 131
SP  - 43
EP  - 49
DO  - 10.5004/dwt.2018.22959
ER  - 
@article{
author = "Stajčić, Aleksandar and Nedeljković, Dragutin and Panić, Vesna and Radović, Ivana and Grujić, Aleksandar and Stajić-Trošić, Jasna and Jančić-Heinemann, Radmila",
year = "2018",
abstract = "This study presents the route for preparation of the membrane-supporting materials with good mechanical behavior and adsorption properties that provide functionality and are easy to use in various environments. Polyethersulfone (PES) membrane-supported hydrogels were prepared via liquid phase inversion process with photopolymerization and monomer crosslinking. The obtained membranes had asymmetric structure containing dense skin on the top of a porous hydrogel as it is verified by scanning electron microscopy. Software analysis of the pore size revealed that fine pores enabled availability of the membrane active centers to metal cations. The membranes with a higher content of the polymer showed significantly improved mechanical properties compared with commonly used ion exchange membranes, which is crucial for the wastewater treatment application. Adsorption kinetics analysis showed that the hydrogel-rich bottom layer has significantly higher adsorption ability in comparison to the top layer. Adsorption kinetics of the bottom side was described by the first-order kinetics model, whereas for the the top side, phase-boundary controlled reaction model was used.",
publisher = "Hopkinton : Desalination Publications",
journal = "Desalination and Water Treatment",
title = "Adsorption kinetics of polyethersulfone membrane-supported hydrogels",
volume = "131",
pages = "43-49",
doi = "10.5004/dwt.2018.22959"
}
Stajčić, A., Nedeljković, D., Panić, V., Radović, I., Grujić, A., Stajić-Trošić, J.,& Jančić-Heinemann, R.. (2018). Adsorption kinetics of polyethersulfone membrane-supported hydrogels. in Desalination and Water Treatment
Hopkinton : Desalination Publications., 131, 43-49.
https://doi.org/10.5004/dwt.2018.22959
Stajčić A, Nedeljković D, Panić V, Radović I, Grujić A, Stajić-Trošić J, Jančić-Heinemann R. Adsorption kinetics of polyethersulfone membrane-supported hydrogels. in Desalination and Water Treatment. 2018;131:43-49.
doi:10.5004/dwt.2018.22959 .
Stajčić, Aleksandar, Nedeljković, Dragutin, Panić, Vesna, Radović, Ivana, Grujić, Aleksandar, Stajić-Trošić, Jasna, Jančić-Heinemann, Radmila, "Adsorption kinetics of polyethersulfone membrane-supported hydrogels" in Desalination and Water Treatment, 131 (2018):43-49,
https://doi.org/10.5004/dwt.2018.22959 . .
1
1