Vranješ-Đurić, Sanja

Link to this page

Authority KeyName Variants
orcid::0000-0002-6340-2387
  • Vranješ-Đurić, Sanja (8)

Author's Bibliography

Multicore flower-like magnetite for potential application in cancer nanomedicine

Ognjanović, Miloš; Dojčinović, Biljana; Stanković, Dalibor; Mirković, Marija; Vranješ-Đurić, Sanja; Antić, Bratislav

(Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7042
AB  - Nanomaterials are intensively researched both from the fundamental aspect due to new properties at the nanoscale, as well as the aspect of their application in many areas of technology. Magnetic nanoparticles (MNPs) are being tested for use in the diagnosis and therapy of diseases. A new field of medicine, Magnetic nanomedicine is primarily based on the application of MNPs as drug carriers, diagnostic agents in Magnetic Resonance Imaging (MRI) and heat generators in magnetic hyperthermia. Among nanoparticles, magnetic nanoplatforms based on iron oxides for cancer diagnosis and therapy (Cancer nanomedicine) are the most researched and clinically tested. This study presents the results of research into the physicochemical properties of iron oxide nanoparticles prepared by the polyol route, as well as their testing for potential applications as agents in magnetic hyperthermia (MH) and radionuclide carriers (vectors) for the diagnosis and therapy of malignant diseases. Multicore iron oxide structures synthesized by the "polyol" method represent clusters of single-core nanoparticles or crystallites. The dimensions of the single core particles are \textasciitilde13.5 nm, while the nanoflowers formed by clustering are \textasciitilde25 nm, depending on the applied synthesis parameters. For targeted medical applications, nanoflowers are coated with different ligands in order to increase colloidal stability and biocompatibility. The best results were by coating MNPs with polyacrylic acid (PAA). The multifunctionality of nanoflowers was investigated by measuring their hyperthermic efficiency for applications in magnetic hyperthermia and radiolabeling with diagnostic (99mTc) and therapeutic radionuclides (177Lu, 90Y). In addition to traditional methods of cancer therapy (surgery, radiotherapy, and chemotherapy), new ways of therapy such as MH are constantly being developed. MH is a therapy based on the property of MNPs that when placed in an alternating (AC) magnetic field, transform the electromagnetic energy of the field into heat. When located inside a tumor, MNPs can locally generate a temperature of 42-46 °C and destroy cancer cells by heat. The hyperthermic efficiency of MNPs is expressed through the Intrinsic Loss Power (ILP) parameter. The measured ILP was 7.3 nHm2/kg which is considered one of the higher reported values found in the literature for iron oxides. Nanoflowers were radiolabeled with 99mTc, 177Lu, and 90Y radionuclides. The in vitro stability of radiolabeling was investigated. Good in vitro stability indicates that the formed radioactive particles can be used simultaneously for bi-modal cancer therapy (MH and radionuclide therapy) or for MH therapy and diagnostics (theranostics), in the case of labeling with 99mTc.
PB  - Association of Metallurgical Engineers of Serbia (AMES)
C3  - MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
T1  - Multicore flower-like magnetite for potential application in cancer nanomedicine
SP  - 21
EP  - 21
UR  - https://hdl.handle.net/21.15107/rcub_cer_7042
ER  - 
@conference{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Stanković, Dalibor and Mirković, Marija and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2023",
abstract = "Nanomaterials are intensively researched both from the fundamental aspect due to new properties at the nanoscale, as well as the aspect of their application in many areas of technology. Magnetic nanoparticles (MNPs) are being tested for use in the diagnosis and therapy of diseases. A new field of medicine, Magnetic nanomedicine is primarily based on the application of MNPs as drug carriers, diagnostic agents in Magnetic Resonance Imaging (MRI) and heat generators in magnetic hyperthermia. Among nanoparticles, magnetic nanoplatforms based on iron oxides for cancer diagnosis and therapy (Cancer nanomedicine) are the most researched and clinically tested. This study presents the results of research into the physicochemical properties of iron oxide nanoparticles prepared by the polyol route, as well as their testing for potential applications as agents in magnetic hyperthermia (MH) and radionuclide carriers (vectors) for the diagnosis and therapy of malignant diseases. Multicore iron oxide structures synthesized by the "polyol" method represent clusters of single-core nanoparticles or crystallites. The dimensions of the single core particles are \textasciitilde13.5 nm, while the nanoflowers formed by clustering are \textasciitilde25 nm, depending on the applied synthesis parameters. For targeted medical applications, nanoflowers are coated with different ligands in order to increase colloidal stability and biocompatibility. The best results were by coating MNPs with polyacrylic acid (PAA). The multifunctionality of nanoflowers was investigated by measuring their hyperthermic efficiency for applications in magnetic hyperthermia and radiolabeling with diagnostic (99mTc) and therapeutic radionuclides (177Lu, 90Y). In addition to traditional methods of cancer therapy (surgery, radiotherapy, and chemotherapy), new ways of therapy such as MH are constantly being developed. MH is a therapy based on the property of MNPs that when placed in an alternating (AC) magnetic field, transform the electromagnetic energy of the field into heat. When located inside a tumor, MNPs can locally generate a temperature of 42-46 °C and destroy cancer cells by heat. The hyperthermic efficiency of MNPs is expressed through the Intrinsic Loss Power (ILP) parameter. The measured ILP was 7.3 nHm2/kg which is considered one of the higher reported values found in the literature for iron oxides. Nanoflowers were radiolabeled with 99mTc, 177Lu, and 90Y radionuclides. The in vitro stability of radiolabeling was investigated. Good in vitro stability indicates that the formed radioactive particles can be used simultaneously for bi-modal cancer therapy (MH and radionuclide therapy) or for MH therapy and diagnostics (theranostics), in the case of labeling with 99mTc.",
publisher = "Association of Metallurgical Engineers of Serbia (AMES)",
journal = "MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina",
title = "Multicore flower-like magnetite for potential application in cancer nanomedicine",
pages = "21-21",
url = "https://hdl.handle.net/21.15107/rcub_cer_7042"
}
Ognjanović, M., Dojčinović, B., Stanković, D., Mirković, M., Vranješ-Đurić, S.,& Antić, B.. (2023). Multicore flower-like magnetite for potential application in cancer nanomedicine. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
Association of Metallurgical Engineers of Serbia (AMES)., 21-21.
https://hdl.handle.net/21.15107/rcub_cer_7042
Ognjanović M, Dojčinović B, Stanković D, Mirković M, Vranješ-Đurić S, Antić B. Multicore flower-like magnetite for potential application in cancer nanomedicine. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina. 2023;:21-21.
https://hdl.handle.net/21.15107/rcub_cer_7042 .
Ognjanović, Miloš, Dojčinović, Biljana, Stanković, Dalibor, Mirković, Marija, Vranješ-Đurić, Sanja, Antić, Bratislav, "Multicore flower-like magnetite for potential application in cancer nanomedicine" in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina (2023):21-21,
https://hdl.handle.net/21.15107/rcub_cer_7042 .

Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power

Ognjanović, Miloš; Radović, Magdalena; Mirković, Marija; Vranješ-Đurić, Sanja; Dojčinović, Biljana; Stanković, Dalibor; Antić, Bratislav

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Radović, Magdalena
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor
AU  - Antić, Bratislav
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7342
AB  - In the last decades, self-heating magnetic nanoparticles (MNPs) were engineered and investigated for magnetic hyperthermia (MH) and other applications such as catalysis and chemical synthesis. To be applied as nanoheaters for in vivo MH in cancer therapy, MNPs should have high heating efficiency expressed by Intrinsic Loss Power (ILP). One of the requirements for in vivo applications of MNPs is their non-toxicity. Hence, the most investigated MNPs for MH are based on iron oxides (magnetite and maghemite), which are non-toxic or slightly toxic. This work aimed to apply thepolyol-mediated protocol to engineer mixed Zn1-xMnxFe2O4 and analyze their heating abilities. To obtain a series of Zn1-xMnxFe2O4 samples with a specific nominal composition, the initial components, salts of Zn, Mn and Fe, were mixed in the appropriate stoichiometric ratio. The deviation from the target stoichiometry and the formation of samples with polyvalent ions and possibly vacancies were determined after ICP analysis. By analyzing TEM micrographs, we found that the change in the chemical composition does not affect the morphology. Multicore flower-like nanostructures with a size in the range of 47-63 nm were obtained. They consist of many cores (crystallites or nanoparticles) with a size of \textasciitilde10 nm. The samples show good colloidal stability, which is significant for their medical applications. Magnetization measurements in different DC fields showed that the samples are superparamagnetic at 300K and that the saturation magnetization values are in the range of \textasciitilde59-73 emu/g. The hyperthermic efficiency of the synthesized samples was tested in an external ac field of 252 kHz and a field strength of 15.9 kA/m. Significantly different values were obtained for the ILP parameter (in units nHm2/Kg): 5.77 (Zn0.098Mn0.447Fe2.455O4) ˃ 3.22 (Mn0.624Fe2.376O4) ˃ 2.04 (Zn0.182Mn0.344Fe2.474O4) ˃ 1.36 (Zn0.309Mn0.240Fe2.451O4) ˃ 1.01 (Zn0.394Mn0.138Fe2.468O4) ˃ 0.34 (Zn0.640Fe2.360O4). To explain the values of the ILP parameter, additional research is required, which includes the analysis of the influence of local defects and cation distribution on the magnetism of the investigated nanostructures. Also, significantly high ILP values indicate that some samples can be selected and further tested for in vitro/in vivo applications.
PB  - Society of Chemists and Technologists of Macedonia
C3  - 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
T1  - Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power
SP  - 185
EP  - 185
UR  - https://hdl.handle.net/21.15107/rcub_cer_7342
ER  - 
@conference{
author = "Ognjanović, Miloš and Radović, Magdalena and Mirković, Marija and Vranješ-Đurić, Sanja and Dojčinović, Biljana and Stanković, Dalibor and Antić, Bratislav",
year = "2023",
abstract = "In the last decades, self-heating magnetic nanoparticles (MNPs) were engineered and investigated for magnetic hyperthermia (MH) and other applications such as catalysis and chemical synthesis. To be applied as nanoheaters for in vivo MH in cancer therapy, MNPs should have high heating efficiency expressed by Intrinsic Loss Power (ILP). One of the requirements for in vivo applications of MNPs is their non-toxicity. Hence, the most investigated MNPs for MH are based on iron oxides (magnetite and maghemite), which are non-toxic or slightly toxic. This work aimed to apply thepolyol-mediated protocol to engineer mixed Zn1-xMnxFe2O4 and analyze their heating abilities. To obtain a series of Zn1-xMnxFe2O4 samples with a specific nominal composition, the initial components, salts of Zn, Mn and Fe, were mixed in the appropriate stoichiometric ratio. The deviation from the target stoichiometry and the formation of samples with polyvalent ions and possibly vacancies were determined after ICP analysis. By analyzing TEM micrographs, we found that the change in the chemical composition does not affect the morphology. Multicore flower-like nanostructures with a size in the range of 47-63 nm were obtained. They consist of many cores (crystallites or nanoparticles) with a size of \textasciitilde10 nm. The samples show good colloidal stability, which is significant for their medical applications. Magnetization measurements in different DC fields showed that the samples are superparamagnetic at 300K and that the saturation magnetization values are in the range of \textasciitilde59-73 emu/g. The hyperthermic efficiency of the synthesized samples was tested in an external ac field of 252 kHz and a field strength of 15.9 kA/m. Significantly different values were obtained for the ILP parameter (in units nHm2/Kg): 5.77 (Zn0.098Mn0.447Fe2.455O4) ˃ 3.22 (Mn0.624Fe2.376O4) ˃ 2.04 (Zn0.182Mn0.344Fe2.474O4) ˃ 1.36 (Zn0.309Mn0.240Fe2.451O4) ˃ 1.01 (Zn0.394Mn0.138Fe2.468O4) ˃ 0.34 (Zn0.640Fe2.360O4). To explain the values of the ILP parameter, additional research is required, which includes the analysis of the influence of local defects and cation distribution on the magnetism of the investigated nanostructures. Also, significantly high ILP values indicate that some samples can be selected and further tested for in vitro/in vivo applications.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia",
title = "Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power",
pages = "185-185",
url = "https://hdl.handle.net/21.15107/rcub_cer_7342"
}
Ognjanović, M., Radović, M., Mirković, M., Vranješ-Đurić, S., Dojčinović, B., Stanković, D.,& Antić, B.. (2023). Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
Society of Chemists and Technologists of Macedonia., 185-185.
https://hdl.handle.net/21.15107/rcub_cer_7342
Ognjanović M, Radović M, Mirković M, Vranješ-Đurić S, Dojčinović B, Stanković D, Antić B. Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia. 2023;:185-185.
https://hdl.handle.net/21.15107/rcub_cer_7342 .
Ognjanović, Miloš, Radović, Magdalena, Mirković, Marija, Vranješ-Đurić, Sanja, Dojčinović, Biljana, Stanković, Dalibor, Antić, Bratislav, "Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power" in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia (2023):185-185,
https://hdl.handle.net/21.15107/rcub_cer_7342 .

Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer

Ognjanović, Miloš; Stanojković, Tatjana; Dojčinović, Biljana; Radović, Magdalena; Mirković, Marija; Vranješ-Đurić, Sanja; Antić, Bratislav

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Stanojković, Tatjana
AU  - Dojčinović, Biljana
AU  - Radović, Magdalena
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7349
AB  - A series of MgxFe3-xO4 (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1) magnetic nanoparticles (MNP) were synthesized by a two-step procedure, a co-precipitation method followed by hydrothermal treatment in a microwave field. The MNP are single-core, with crystallite size gradually decreasing from 15.5(3) up to 2.5(3) nm with an increase ofx. TEM images show pseudospherical log-normally distributed particles with an average particle diameter of 19.8 nm and a polydispersity index of 26.1% for magnetite. The particle diameter decreases with the increase of magnesium (x) in the formula unit. The colloidal stability of MNP was achieved by their surface modification with citric acid (CA), oleic acid (OA) and polyethylene glycol (PEG). The cytotoxic activity of uncoated and coated Mg0.6Fe2.4O4 was tested against target malignant cells (HeLa, LC174, A549) and normal MRC5 cells. The investigated MNP show moderate cytotoxic activity against the tested malignant cells in vitro. In contrast, MNP didn’tshow any significant cytotoxic effect against normal cells. HeLa cells exhibited the highest susceptibility among the malignant cells. Mg0.6Fe2.4O4@OA show good cytotoxic activity against all examined malignant cells, significantly higher than other tested MNP. It can be seen that Mg0.6Fe2.4O4@PEG show a lower cytotoxic activity compared to all analyzed MNP. A direct method was used for labeling with radionuclide 90Y, which involves incubation of MNP with 90Y at a certain temperature and time. The labeling yield of the 90Y-coated MNP was determined by analyzing the radiochemical purity after labeling. 90YMg0.2Fe2.8O4@PEG were labeled in high yield (100%), while the yield for 90YMg0.2Fe2.8O4@CA was 83%. In vitro stability of 90Y-coated MNP at room temperature in physiological solution and human serum was monitored within 72 h from the moment of labeling by determining the radiochemical purity of ITLC-SG by radio chromatographic method. The stability of 90Y-Mg0.2Fe2.8O4@PEG was about 97%, while 90Y-Mg0.2Fe2.8O4@CA stability was 73%. The results of this study indicate that radiolabeled surface-modified (Mg, Fe)3O4 can be used as vectors in radionuclide therapy of malignant diseases.
PB  - Society of Chemists and Technologists of Macedonia
C3  - 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
T1  - Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer
SP  - 186
EP  - 186
UR  - https://hdl.handle.net/21.15107/rcub_cer_7349
ER  - 
@conference{
author = "Ognjanović, Miloš and Stanojković, Tatjana and Dojčinović, Biljana and Radović, Magdalena and Mirković, Marija and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2023",
abstract = "A series of MgxFe3-xO4 (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1) magnetic nanoparticles (MNP) were synthesized by a two-step procedure, a co-precipitation method followed by hydrothermal treatment in a microwave field. The MNP are single-core, with crystallite size gradually decreasing from 15.5(3) up to 2.5(3) nm with an increase ofx. TEM images show pseudospherical log-normally distributed particles with an average particle diameter of 19.8 nm and a polydispersity index of 26.1% for magnetite. The particle diameter decreases with the increase of magnesium (x) in the formula unit. The colloidal stability of MNP was achieved by their surface modification with citric acid (CA), oleic acid (OA) and polyethylene glycol (PEG). The cytotoxic activity of uncoated and coated Mg0.6Fe2.4O4 was tested against target malignant cells (HeLa, LC174, A549) and normal MRC5 cells. The investigated MNP show moderate cytotoxic activity against the tested malignant cells in vitro. In contrast, MNP didn’tshow any significant cytotoxic effect against normal cells. HeLa cells exhibited the highest susceptibility among the malignant cells. Mg0.6Fe2.4O4@OA show good cytotoxic activity against all examined malignant cells, significantly higher than other tested MNP. It can be seen that Mg0.6Fe2.4O4@PEG show a lower cytotoxic activity compared to all analyzed MNP. A direct method was used for labeling with radionuclide 90Y, which involves incubation of MNP with 90Y at a certain temperature and time. The labeling yield of the 90Y-coated MNP was determined by analyzing the radiochemical purity after labeling. 90YMg0.2Fe2.8O4@PEG were labeled in high yield (100%), while the yield for 90YMg0.2Fe2.8O4@CA was 83%. In vitro stability of 90Y-coated MNP at room temperature in physiological solution and human serum was monitored within 72 h from the moment of labeling by determining the radiochemical purity of ITLC-SG by radio chromatographic method. The stability of 90Y-Mg0.2Fe2.8O4@PEG was about 97%, while 90Y-Mg0.2Fe2.8O4@CA stability was 73%. The results of this study indicate that radiolabeled surface-modified (Mg, Fe)3O4 can be used as vectors in radionuclide therapy of malignant diseases.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia",
title = "Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer",
pages = "186-186",
url = "https://hdl.handle.net/21.15107/rcub_cer_7349"
}
Ognjanović, M., Stanojković, T., Dojčinović, B., Radović, M., Mirković, M., Vranješ-Đurić, S.,& Antić, B.. (2023). Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
Society of Chemists and Technologists of Macedonia., 186-186.
https://hdl.handle.net/21.15107/rcub_cer_7349
Ognjanović M, Stanojković T, Dojčinović B, Radović M, Mirković M, Vranješ-Đurić S, Antić B. Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia. 2023;:186-186.
https://hdl.handle.net/21.15107/rcub_cer_7349 .
Ognjanović, Miloš, Stanojković, Tatjana, Dojčinović, Biljana, Radović, Magdalena, Mirković, Marija, Vranješ-Đurić, Sanja, Antić, Bratislav, "Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer" in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia (2023):186-186,
https://hdl.handle.net/21.15107/rcub_cer_7349 .

Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product

Stanković, Dalibor M.; Milanović, Zorana; Švorc, Ljubomir; Stanković, Vesna; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja

(Elsevier, 2021)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Milanović, Zorana
AU  - Švorc, Ljubomir
AU  - Stanković, Vesna
AU  - Janković, Drina
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4224
AB  - This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions
PB  - Elsevier
T2  - Diamond and Related Materials
T1  - Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product
VL  - 113
SP  - 108277
DO  - 10.1016/j.diamond.2021.108277
ER  - 
@article{
author = "Stanković, Dalibor M. and Milanović, Zorana and Švorc, Ljubomir and Stanković, Vesna and Janković, Drina and Mirković, Marija and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions",
publisher = "Elsevier",
journal = "Diamond and Related Materials",
title = "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product",
volume = "113",
pages = "108277",
doi = "10.1016/j.diamond.2021.108277"
}
Stanković, D. M., Milanović, Z., Švorc, L., Stanković, V., Janković, D., Mirković, M.,& Vranješ-Đurić, S.. (2021). Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials
Elsevier., 113, 108277.
https://doi.org/10.1016/j.diamond.2021.108277
Stanković DM, Milanović Z, Švorc L, Stanković V, Janković D, Mirković M, Vranješ-Đurić S. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials. 2021;113:108277.
doi:10.1016/j.diamond.2021.108277 .
Stanković, Dalibor M., Milanović, Zorana, Švorc, Ljubomir, Stanković, Vesna, Janković, Drina, Mirković, Marija, Vranješ-Đurić, Sanja, "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product" in Diamond and Related Materials, 113 (2021):108277,
https://doi.org/10.1016/j.diamond.2021.108277 . .
12
2
12

Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye

Ognjanović, Miloš; Stanković, Dalibor; Fabián, Martin; Vranješ-Đurić, Sanja; Antić, Bratislav; Dojčinović, Biljana

(IOP Publishing, 2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
AU  - Fabián, Martin
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3390
AB  - Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants.
PB  - IOP Publishing
T2  - Materials Research Express
T1  - Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye
VL  - 7
IS  - 1
SP  - 015509
DO  - 10.1088/2053-1591/ab6490
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor and Fabián, Martin and Vranješ-Đurić, Sanja and Antić, Bratislav and Dojčinović, Biljana",
year = "2020",
abstract = "Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants.",
publisher = "IOP Publishing",
journal = "Materials Research Express",
title = "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye",
volume = "7",
number = "1",
pages = "015509",
doi = "10.1088/2053-1591/ab6490"
}
Ognjanović, M., Stanković, D., Fabián, M., Vranješ-Đurić, S., Antić, B.,& Dojčinović, B.. (2020). Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express
IOP Publishing., 7(1), 015509.
https://doi.org/10.1088/2053-1591/ab6490
Ognjanović M, Stanković D, Fabián M, Vranješ-Đurić S, Antić B, Dojčinović B. Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express. 2020;7(1):015509.
doi:10.1088/2053-1591/ab6490 .
Ognjanović, Miloš, Stanković, Dalibor, Fabián, Martin, Vranješ-Đurić, Sanja, Antić, Bratislav, Dojčinović, Biljana, "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye" in Materials Research Express, 7, no. 1 (2020):015509,
https://doi.org/10.1088/2053-1591/ab6490 . .
2
1
2

TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor

Ognjanović, Miloš; Stanković, Vesna; Knežević, Sara; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Knežević, Sara
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3594
AB  - Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and
enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized
titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of crosslinked
material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and
an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher
current than non-silanized material. The proposed approach was used for the modification of the printed threeelectrode
system and the development of the impedimetric glucose biosensor. The material morphology and
electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present
combination effectively modified the electrode surface and serve as a promising basis for the construction of
Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from
50 μmol to 1000 μmol, with the limit of detection of 24 μmol. Finally, negligible interference effect and application
in the real sample indicate that the proposed mechanism can be successfully applied to the assessment
of glucose level in only one drop of real sample.
PB  - Elsevier
T2  - Microchemical Journal
T1  - TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor
VL  - 158
SP  - 105150
DO  - 10.1016/j.microc.2020.105150
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Vesna and Knežević, Sara and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2020",
abstract = "Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and
enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized
titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of crosslinked
material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and
an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher
current than non-silanized material. The proposed approach was used for the modification of the printed threeelectrode
system and the development of the impedimetric glucose biosensor. The material morphology and
electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present
combination effectively modified the electrode surface and serve as a promising basis for the construction of
Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from
50 μmol to 1000 μmol, with the limit of detection of 24 μmol. Finally, negligible interference effect and application
in the real sample indicate that the proposed mechanism can be successfully applied to the assessment
of glucose level in only one drop of real sample.",
publisher = "Elsevier",
journal = "Microchemical Journal",
title = "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor",
volume = "158",
pages = "105150",
doi = "10.1016/j.microc.2020.105150"
}
Ognjanović, M., Stanković, V., Knežević, S., Antić, B., Vranješ-Đurić, S.,& Stanković, D.. (2020). TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal
Elsevier., 158, 105150.
https://doi.org/10.1016/j.microc.2020.105150
Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Đurić S, Stanković D. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal. 2020;158:105150.
doi:10.1016/j.microc.2020.105150 .
Ognjanović, Miloš, Stanković, Vesna, Knežević, Sara, Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor, "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor" in Microchemical Journal, 158 (2020):105150,
https://doi.org/10.1016/j.microc.2020.105150 . .
18
7
16

Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+

Hercigonja, Radmila; Vranješ-Đurić, Sanja; Mirković, Marija D.; Marković, Bojana; Maksin, Danijela; Marković, Bojana; Nastasović, Aleksandra

(Dordrecht : Springer, 2018)

TY  - JOUR
AU  - Hercigonja, Radmila
AU  - Vranješ-Đurić, Sanja
AU  - Mirković, Marija D.
AU  - Marković, Bojana
AU  - Maksin, Danijela
AU  - Marković, Bojana
AU  - Nastasović, Aleksandra
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2290
AB  - The adsorption properties of two zeolite types, faujasite (NaY, ZnY, CoY) and LTA-4A zeolite (NaA, ZnA, CoA), towards technetium were studied in batch static experiments. The Si/Al ratio, acidity, dealumination, chargebalance cations of zeolite, contact time and temperature determined the adsorption efficiency. The maximum removal efficiency of 98.8% and K (d) value (2.06 x 10(-4) cm(3) g(-1)) was achieved using CoY (zeolite type Y). The kinetics of technetium adsorption followed the pseudo-second order model. The TcO2 adsorption is mainly due to the hydrogen bonds between protons of the zeolitic structural OH groups (Bronsted acid center) and oxygen from the TcO2 (-).
PB  - Dordrecht : Springer
T2  - Journal of Radioanalytical and Nuclear Chemistry
T1  - Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+
VL  - 317
IS  - 1
SP  - 215
EP  - 225
DO  - 10.1007/s10967-018-5893-2
ER  - 
@article{
author = "Hercigonja, Radmila and Vranješ-Đurić, Sanja and Mirković, Marija D. and Marković, Bojana and Maksin, Danijela and Marković, Bojana and Nastasović, Aleksandra",
year = "2018",
abstract = "The adsorption properties of two zeolite types, faujasite (NaY, ZnY, CoY) and LTA-4A zeolite (NaA, ZnA, CoA), towards technetium were studied in batch static experiments. The Si/Al ratio, acidity, dealumination, chargebalance cations of zeolite, contact time and temperature determined the adsorption efficiency. The maximum removal efficiency of 98.8% and K (d) value (2.06 x 10(-4) cm(3) g(-1)) was achieved using CoY (zeolite type Y). The kinetics of technetium adsorption followed the pseudo-second order model. The TcO2 adsorption is mainly due to the hydrogen bonds between protons of the zeolitic structural OH groups (Bronsted acid center) and oxygen from the TcO2 (-).",
publisher = "Dordrecht : Springer",
journal = "Journal of Radioanalytical and Nuclear Chemistry",
title = "Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+",
volume = "317",
number = "1",
pages = "215-225",
doi = "10.1007/s10967-018-5893-2"
}
Hercigonja, R., Vranješ-Đurić, S., Mirković, M. D., Marković, B., Maksin, D., Marković, B.,& Nastasović, A.. (2018). Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+. in Journal of Radioanalytical and Nuclear Chemistry
Dordrecht : Springer., 317(1), 215-225.
https://doi.org/10.1007/s10967-018-5893-2
Hercigonja R, Vranješ-Đurić S, Mirković MD, Marković B, Maksin D, Marković B, Nastasović A. Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+. in Journal of Radioanalytical and Nuclear Chemistry. 2018;317(1):215-225.
doi:10.1007/s10967-018-5893-2 .
Hercigonja, Radmila, Vranješ-Đurić, Sanja, Mirković, Marija D., Marković, Bojana, Maksin, Danijela, Marković, Bojana, Nastasović, Aleksandra, "Technetium removal from the aqueous solution using zeolites A and Y containing transition metal ions Co2+ and Zn2+" in Journal of Radioanalytical and Nuclear Chemistry, 317, no. 1 (2018):215-225,
https://doi.org/10.1007/s10967-018-5893-2 . .
5
2
6

Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation

Isaković, Aleksandra; Marković, Zoran M.; Nikolić, Nadežda; Todorović-Marković, Biljana; Vranješ-Đurić, Sanja; Harhaji, Ljubica; Raičević, Nevena; Romčević, Nebojša; Vasiljević-Radović, Dana; Dramićanin, Miroslav; Trajković, Vladimir

(Elsevier, 2006)

TY  - JOUR
AU  - Isaković, Aleksandra
AU  - Marković, Zoran M.
AU  - Nikolić, Nadežda
AU  - Todorović-Marković, Biljana
AU  - Vranješ-Đurić, Sanja
AU  - Harhaji, Ljubica
AU  - Raičević, Nevena
AU  - Romčević, Nebojša
AU  - Vasiljević-Radović, Dana
AU  - Dramićanin, Miroslav
AU  - Trajković, Vladimir
PY  - 2006
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4120
AB  - We investigated the effect of γ-irradiation on the cytotoxicity of pure C 60 solubilized in water by using tetrahydrofuran (THF/n-C 60 or THF/n-C 60 ). In contrast to THF/n-C 60 , its γ-irradiated counterpart failed to generate oxygen radicals and cause extracellular signal-regulated kinase (ERK)-dependent necrotic cell death in various types of mammalian cells. Moreover, γ-irradiated THF/n-C 60 protected cells from the oxidative stress induced by native THF/n-C 60 or hydrogen peroxide. The observed biological effects were associated with γ-irradiation-mediated decomposition of THF and subsequent derivatization of the n-C 60 surface. These results for the first time demonstrate γ-irradiation-mediated changes in the physico-chemical properties of THF-prepared nanocrystalline C 60 , resulting in a complete loss of its cytotoxic effect and its conversion to a cytoprotective agent.
PB  - Elsevier
T2  - Biomaterials
T1  - Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation
VL  - 27
IS  - 29
SP  - 5049
EP  - 5058
DO  - 10.1016/j.biomaterials.2006.05.047
ER  - 
@article{
author = "Isaković, Aleksandra and Marković, Zoran M. and Nikolić, Nadežda and Todorović-Marković, Biljana and Vranješ-Đurić, Sanja and Harhaji, Ljubica and Raičević, Nevena and Romčević, Nebojša and Vasiljević-Radović, Dana and Dramićanin, Miroslav and Trajković, Vladimir",
year = "2006",
abstract = "We investigated the effect of γ-irradiation on the cytotoxicity of pure C 60 solubilized in water by using tetrahydrofuran (THF/n-C 60 or THF/n-C 60 ). In contrast to THF/n-C 60 , its γ-irradiated counterpart failed to generate oxygen radicals and cause extracellular signal-regulated kinase (ERK)-dependent necrotic cell death in various types of mammalian cells. Moreover, γ-irradiated THF/n-C 60 protected cells from the oxidative stress induced by native THF/n-C 60 or hydrogen peroxide. The observed biological effects were associated with γ-irradiation-mediated decomposition of THF and subsequent derivatization of the n-C 60 surface. These results for the first time demonstrate γ-irradiation-mediated changes in the physico-chemical properties of THF-prepared nanocrystalline C 60 , resulting in a complete loss of its cytotoxic effect and its conversion to a cytoprotective agent.",
publisher = "Elsevier",
journal = "Biomaterials",
title = "Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation",
volume = "27",
number = "29",
pages = "5049-5058",
doi = "10.1016/j.biomaterials.2006.05.047"
}
Isaković, A., Marković, Z. M., Nikolić, N., Todorović-Marković, B., Vranješ-Đurić, S., Harhaji, L., Raičević, N., Romčević, N., Vasiljević-Radović, D., Dramićanin, M.,& Trajković, V.. (2006). Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. in Biomaterials
Elsevier., 27(29), 5049-5058.
https://doi.org/10.1016/j.biomaterials.2006.05.047
Isaković A, Marković ZM, Nikolić N, Todorović-Marković B, Vranješ-Đurić S, Harhaji L, Raičević N, Romčević N, Vasiljević-Radović D, Dramićanin M, Trajković V. Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. in Biomaterials. 2006;27(29):5049-5058.
doi:10.1016/j.biomaterials.2006.05.047 .
Isaković, Aleksandra, Marković, Zoran M., Nikolić, Nadežda, Todorović-Marković, Biljana, Vranješ-Đurić, Sanja, Harhaji, Ljubica, Raičević, Nevena, Romčević, Nebojša, Vasiljević-Radović, Dana, Dramićanin, Miroslav, Trajković, Vladimir, "Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation" in Biomaterials, 27, no. 29 (2006):5049-5058,
https://doi.org/10.1016/j.biomaterials.2006.05.047 . .
63
56
69