Svetozarević, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0002-4549-7538
  • Svetozarević, Milica (2)

Author's Bibliography

Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes

Ivanovska, Aleksandra; Dojčinović, Biljana; Lađarević, Jelena; Pavun, Leposava; Mijin, Dušan; Kostić, Mirjana; Svetozarević, Milica

(Hindawi, 2023)

TY  - JOUR
AU  - Ivanovska, Aleksandra
AU  - Dojčinović, Biljana
AU  - Lađarević, Jelena
AU  - Pavun, Leposava
AU  - Mijin, Dušan
AU  - Kostić, Mirjana
AU  - Svetozarević, Milica
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6677
AB  - This study is aimed at extending the soybean hulls' lifetime by their utilization as an adsorbent for metal ions (Cd2+ and Cu2+) and dyes (Reactive Yellow 39 (RY 39) and Acid Blue 225 (AB 225)). ATR-FTIR spectroscopy, FE-SEM microscopy, and zeta potential measurements were used for adsorbent characterization. The effect of the solution's pH, peroxidase extraction, adsorbent particle size, contact time, the pollutant's initial concentration, and temperature on the soybean hulls' adsorption potential was studied. Before peroxidase extraction, soybean hulls were capable of removing 72% Cd2+, 71% Cu2+ (at a pH of 5.00) or 81% RY 39, and 73% AB 225 (at a pH of 3.00). For further experiments, soybean hulls without peroxidase were used for several reasons: (1) due to their observed higher metal ion removal, (2) in order to reduce the waste disposal cost after the peroxidase (usually used for wastewater decolorization) extraction, and (3) since the soybean hulls without peroxidase possessed significantly lower secondary pollution than those with peroxidase. Cd2+ and Cu2+ removal was slightly increased when the smaller adsorbent fraction (710-1000 μm) was used, while the adsorbent particle size did not have an impact on dye removal. After 30 min of contact time, 92% and 88% of RY 39 and AB 225 were removed, respectively, while after the same contact time, 80% and 69% of Cd2+ and Cu2+ were removed, respectively. Adsorption of all tested pollutants follows a pseudo-second-order reaction through the fast adsorption, intraparticle diffusion, and final equilibrium stage. The maximal adsorption capacities determined by the Langmuir model were 21.10, 20.54, 16.54, and 17.23 mg/g for Cd2+, Cu2+, RY 39, and AB 225, respectively. Calculated thermodynamic parameters suggested that the adsorption of all pollutants is spontaneous and of endothermic character. Moreover, different binary mixtures were prepared, and the competitive adsorptions revealed that the soybean hulls are the most efficient adsorbent for the mixture of AB 225 and Cu2+. The findings of this study contribute to the soybean hulls' recovery after the peroxidase extraction and bring them into the circular economy concept.
PB  - Hindawi
T2  - Adsorption Science and Technology
T1  - Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes
VL  - 2023
SP  - 8532316
DO  - 10.1155/2023/8532316
ER  - 
@article{
author = "Ivanovska, Aleksandra and Dojčinović, Biljana and Lađarević, Jelena and Pavun, Leposava and Mijin, Dušan and Kostić, Mirjana and Svetozarević, Milica",
year = "2023",
abstract = "This study is aimed at extending the soybean hulls' lifetime by their utilization as an adsorbent for metal ions (Cd2+ and Cu2+) and dyes (Reactive Yellow 39 (RY 39) and Acid Blue 225 (AB 225)). ATR-FTIR spectroscopy, FE-SEM microscopy, and zeta potential measurements were used for adsorbent characterization. The effect of the solution's pH, peroxidase extraction, adsorbent particle size, contact time, the pollutant's initial concentration, and temperature on the soybean hulls' adsorption potential was studied. Before peroxidase extraction, soybean hulls were capable of removing 72% Cd2+, 71% Cu2+ (at a pH of 5.00) or 81% RY 39, and 73% AB 225 (at a pH of 3.00). For further experiments, soybean hulls without peroxidase were used for several reasons: (1) due to their observed higher metal ion removal, (2) in order to reduce the waste disposal cost after the peroxidase (usually used for wastewater decolorization) extraction, and (3) since the soybean hulls without peroxidase possessed significantly lower secondary pollution than those with peroxidase. Cd2+ and Cu2+ removal was slightly increased when the smaller adsorbent fraction (710-1000 μm) was used, while the adsorbent particle size did not have an impact on dye removal. After 30 min of contact time, 92% and 88% of RY 39 and AB 225 were removed, respectively, while after the same contact time, 80% and 69% of Cd2+ and Cu2+ were removed, respectively. Adsorption of all tested pollutants follows a pseudo-second-order reaction through the fast adsorption, intraparticle diffusion, and final equilibrium stage. The maximal adsorption capacities determined by the Langmuir model were 21.10, 20.54, 16.54, and 17.23 mg/g for Cd2+, Cu2+, RY 39, and AB 225, respectively. Calculated thermodynamic parameters suggested that the adsorption of all pollutants is spontaneous and of endothermic character. Moreover, different binary mixtures were prepared, and the competitive adsorptions revealed that the soybean hulls are the most efficient adsorbent for the mixture of AB 225 and Cu2+. The findings of this study contribute to the soybean hulls' recovery after the peroxidase extraction and bring them into the circular economy concept.",
publisher = "Hindawi",
journal = "Adsorption Science and Technology",
title = "Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes",
volume = "2023",
pages = "8532316",
doi = "10.1155/2023/8532316"
}
Ivanovska, A., Dojčinović, B., Lađarević, J., Pavun, L., Mijin, D., Kostić, M.,& Svetozarević, M.. (2023). Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes. in Adsorption Science and Technology
Hindawi., 2023, 8532316.
https://doi.org/10.1155/2023/8532316
Ivanovska A, Dojčinović B, Lađarević J, Pavun L, Mijin D, Kostić M, Svetozarević M. Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes. in Adsorption Science and Technology. 2023;2023:8532316.
doi:10.1155/2023/8532316 .
Ivanovska, Aleksandra, Dojčinović, Biljana, Lađarević, Jelena, Pavun, Leposava, Mijin, Dušan, Kostić, Mirjana, Svetozarević, Milica, "Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes" in Adsorption Science and Technology, 2023 (2023):8532316,
https://doi.org/10.1155/2023/8532316 . .
2
3

Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds

Marković, Maja D.; Svetozarević, Milica; Panić, Vesna V.; Savić, Sanja I.; Mašulović, Aleksandra D.; Spasojević, Pavle; Pjanović, Rada

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Marković, Maja D.
AU  - Svetozarević, Milica
AU  - Panić, Vesna V.
AU  - Savić, Sanja I.
AU  - Mašulović, Aleksandra D.
AU  - Spasojević, Pavle
AU  - Pjanović, Rada
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5666
AB  - This study reports successful free radical synthesis of pH-sensitive hydrogels based on poly(methacrylic acid) (PMAA) by using new green initiation system based on vitamin C and hydrogen peroxide (VC/H2O2). The application of proposed initiation system provides many advantages, above all cost effective and eco-friendly synthesis which can be carried out under ambient conditions. The obtained PMAA hydrogels are analyzed by various technics: Differential Scanning Calorimetry, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy and by using single compression tests. In line with the intended application, PMAA hydrogels are further investigated in terms of their potential to be used for encapsulation and controlled release of active substances such as antioxidant phenolic compounds. To keep it green, the total phenolic compounds (TPC) were obtained from orange peels waste by applying ultrasonic-assisted extraction and deep eutectic solvent (DES) based on glycerol:urea:water. The TPC were successfully encapsulated into the PMAA hydrogels which were previously estimated to have the optimal mechanical and swelling properties with respect to the final application. The swelling behavior of the PMAA hydrogels and controlled release of the TPC were tested as a function of the various synthesis parameters in several media with different pH values. It was shown that TPC can be released in control manner in medium which simulates the environment in human intestines, finally resulting in enhanced bioavailability of TPC, reduced side effects and improved therapeutic effects.
PB  - Elsevier B.V.
T2  - Chemical Engineering Journal
T1  - Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds
VL  - 459
SP  - 141580
DO  - 10.1016/j.cej.2023.141580
ER  - 
@article{
author = "Marković, Maja D. and Svetozarević, Milica and Panić, Vesna V. and Savić, Sanja I. and Mašulović, Aleksandra D. and Spasojević, Pavle and Pjanović, Rada",
year = "2023",
abstract = "This study reports successful free radical synthesis of pH-sensitive hydrogels based on poly(methacrylic acid) (PMAA) by using new green initiation system based on vitamin C and hydrogen peroxide (VC/H2O2). The application of proposed initiation system provides many advantages, above all cost effective and eco-friendly synthesis which can be carried out under ambient conditions. The obtained PMAA hydrogels are analyzed by various technics: Differential Scanning Calorimetry, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy and by using single compression tests. In line with the intended application, PMAA hydrogels are further investigated in terms of their potential to be used for encapsulation and controlled release of active substances such as antioxidant phenolic compounds. To keep it green, the total phenolic compounds (TPC) were obtained from orange peels waste by applying ultrasonic-assisted extraction and deep eutectic solvent (DES) based on glycerol:urea:water. The TPC were successfully encapsulated into the PMAA hydrogels which were previously estimated to have the optimal mechanical and swelling properties with respect to the final application. The swelling behavior of the PMAA hydrogels and controlled release of the TPC were tested as a function of the various synthesis parameters in several media with different pH values. It was shown that TPC can be released in control manner in medium which simulates the environment in human intestines, finally resulting in enhanced bioavailability of TPC, reduced side effects and improved therapeutic effects.",
publisher = "Elsevier B.V.",
journal = "Chemical Engineering Journal",
title = "Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds",
volume = "459",
pages = "141580",
doi = "10.1016/j.cej.2023.141580"
}
Marković, M. D., Svetozarević, M., Panić, V. V., Savić, S. I., Mašulović, A. D., Spasojević, P.,& Pjanović, R.. (2023). Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds. in Chemical Engineering Journal
Elsevier B.V.., 459, 141580.
https://doi.org/10.1016/j.cej.2023.141580
Marković MD, Svetozarević M, Panić VV, Savić SI, Mašulović AD, Spasojević P, Pjanović R. Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds. in Chemical Engineering Journal. 2023;459:141580.
doi:10.1016/j.cej.2023.141580 .
Marković, Maja D., Svetozarević, Milica, Panić, Vesna V., Savić, Sanja I., Mašulović, Aleksandra D., Spasojević, Pavle, Pjanović, Rada, "Novel eco-friendly initiation system based on vitamin C for energy efficient synthesis of PMAA hydrogel used for delivery of phenolic compounds" in Chemical Engineering Journal, 459 (2023):141580,
https://doi.org/10.1016/j.cej.2023.141580 . .
2
2