Figueiredo, J.L.

Link to this page

Authority KeyName Variants
b4601c2f-c34f-4c3c-87ad-746ad65ca0df
  • Figueiredo, J.L. (1)
Projects

Author's Bibliography

Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer

Zdolšek, N.; Rocha, R.P.; Krstić, Jugoslav; Trtić-Petrović, Tatjana; Šljukić, Biljana; Figueiredo, J.L.; Vujković, Milica

(Elsevier, 2019)

TY  - JOUR
AU  - Zdolšek, N.
AU  - Rocha, R.P.
AU  - Krstić, Jugoslav
AU  - Trtić-Petrović, Tatjana
AU  - Šljukić, Biljana
AU  - Figueiredo, J.L.
AU  - Vujković, Milica
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2488
AB  - This work shows the potential application of carbon materials prepared by three different ionic liquid-based methods, using 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3], for electrochemical supercapacitors. The effects of [bmim][MeSO3] on morphology, texture and surface chemistry of prepared materials has been explored by SEM/TEM, N2/CO2 adsorption measurements and XPS. The results indicate the possibility of synthesis of carbon materials with tunable physicochemical properties using ionic liquid based methods. The charge storage behavior of all materials was studied in three different pH aqueous electrolytes. The pseudocapacitive and double layer contributions were estimated and discussed from the aspect of the textural changes and the changes of the chemical composition of surface functional groups containing heteroatoms. C[dbnd]O type functional groups, with the contribution of COOH groups, were found to be responsible for a different amount of charge, which could be stored in alkaline and acidic electrolytic solution. The material prepared by direct carbonization of [bmim][MeSO3], showed the best electrochemical performance in alkaline electrolyte with a capacitance of 187 F g−1 at 5 mV s−1 (or 148 F g−1 at 1 A g−1), due to the contribution of both electric-double layer capacitance and pseudocapacitance which arises from oxygen, nitrogen and sulfur functional groups.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer
VL  - 298
SP  - 541
EP  - 551
DO  - 10.1016/j.electacta.2018.12.129
ER  - 
@article{
author = "Zdolšek, N. and Rocha, R.P. and Krstić, Jugoslav and Trtić-Petrović, Tatjana and Šljukić, Biljana and Figueiredo, J.L. and Vujković, Milica",
year = "2019",
abstract = "This work shows the potential application of carbon materials prepared by three different ionic liquid-based methods, using 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3], for electrochemical supercapacitors. The effects of [bmim][MeSO3] on morphology, texture and surface chemistry of prepared materials has been explored by SEM/TEM, N2/CO2 adsorption measurements and XPS. The results indicate the possibility of synthesis of carbon materials with tunable physicochemical properties using ionic liquid based methods. The charge storage behavior of all materials was studied in three different pH aqueous electrolytes. The pseudocapacitive and double layer contributions were estimated and discussed from the aspect of the textural changes and the changes of the chemical composition of surface functional groups containing heteroatoms. C[dbnd]O type functional groups, with the contribution of COOH groups, were found to be responsible for a different amount of charge, which could be stored in alkaline and acidic electrolytic solution. The material prepared by direct carbonization of [bmim][MeSO3], showed the best electrochemical performance in alkaline electrolyte with a capacitance of 187 F g−1 at 5 mV s−1 (or 148 F g−1 at 1 A g−1), due to the contribution of both electric-double layer capacitance and pseudocapacitance which arises from oxygen, nitrogen and sulfur functional groups.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer",
volume = "298",
pages = "541-551",
doi = "10.1016/j.electacta.2018.12.129"
}
Zdolšek, N., Rocha, R.P., Krstić, J., Trtić-Petrović, T., Šljukić, B., Figueiredo, J.L.,& Vujković, M.. (2019). Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. in Electrochimica Acta
Elsevier., 298, 541-551.
https://doi.org/10.1016/j.electacta.2018.12.129
Zdolšek N, Rocha R, Krstić J, Trtić-Petrović T, Šljukić B, Figueiredo J, Vujković M. Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. in Electrochimica Acta. 2019;298:541-551.
doi:10.1016/j.electacta.2018.12.129 .
Zdolšek, N., Rocha, R.P., Krstić, Jugoslav, Trtić-Petrović, Tatjana, Šljukić, Biljana, Figueiredo, J.L., Vujković, Milica, "Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer" in Electrochimica Acta, 298 (2019):541-551,
https://doi.org/10.1016/j.electacta.2018.12.129 . .
32
22
32