Calija, Bojan

Link to this page

Authority KeyName Variants
47367eaf-a184-4f15-98b1-2afeb1142724
  • Calija, Bojan (3)
Projects

Author's Bibliography

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4291
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2360
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
22

Inorganically modified diatomite as a potential prolonged-release drug carrier

Janicijevic, Jelena; Krajisnik, Danina; Calija, Bojan; Dobricic, Vladimir; Dakovic, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milic, Jela

(Elsevier, 2014)

TY  - JOUR
AU  - Janicijevic, Jelena
AU  - Krajisnik, Danina
AU  - Calija, Bojan
AU  - Dobricic, Vladimir
AU  - Dakovic, Aleksandra
AU  - Krstić, Jugoslav
AU  - Marković, Marija
AU  - Milic, Jela
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1589
AB  - Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH 6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (similar to 250 mg/g in 2 h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8 h from both DAMD comprimates (18% after 8 h) and PMDMD comprimates (45% after 8 h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process.
PB  - Elsevier
T2  - Materials Science & Engineering C-Materials For Biological Applications
T1  - Inorganically modified diatomite as a potential prolonged-release drug carrier
VL  - 42
SP  - 412
EP  - 420
DO  - 10.1016/j.msec.2014.05.052
ER  - 
@article{
author = "Janicijevic, Jelena and Krajisnik, Danina and Calija, Bojan and Dobricic, Vladimir and Dakovic, Aleksandra and Krstić, Jugoslav and Marković, Marija and Milic, Jela",
year = "2014",
abstract = "Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH 6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (similar to 250 mg/g in 2 h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8 h from both DAMD comprimates (18% after 8 h) and PMDMD comprimates (45% after 8 h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process.",
publisher = "Elsevier",
journal = "Materials Science & Engineering C-Materials For Biological Applications",
title = "Inorganically modified diatomite as a potential prolonged-release drug carrier",
volume = "42",
pages = "412-420",
doi = "10.1016/j.msec.2014.05.052"
}
Janicijevic, J., Krajisnik, D., Calija, B., Dobricic, V., Dakovic, A., Krstić, J., Marković, M.,& Milic, J.. (2014). Inorganically modified diatomite as a potential prolonged-release drug carrier. in Materials Science & Engineering C-Materials For Biological Applications
Elsevier., 42, 412-420.
https://doi.org/10.1016/j.msec.2014.05.052
Janicijevic J, Krajisnik D, Calija B, Dobricic V, Dakovic A, Krstić J, Marković M, Milic J. Inorganically modified diatomite as a potential prolonged-release drug carrier. in Materials Science & Engineering C-Materials For Biological Applications. 2014;42:412-420.
doi:10.1016/j.msec.2014.05.052 .
Janicijevic, Jelena, Krajisnik, Danina, Calija, Bojan, Dobricic, Vladimir, Dakovic, Aleksandra, Krstić, Jugoslav, Marković, Marija, Milic, Jela, "Inorganically modified diatomite as a potential prolonged-release drug carrier" in Materials Science & Engineering C-Materials For Biological Applications, 42 (2014):412-420,
https://doi.org/10.1016/j.msec.2014.05.052 . .
25
16
29