Sarić, Gordana G.

Link to this page

Authority KeyName Variants
c9b16b77-1b55-4b54-897c-442adcef4744
  • Sarić, Gordana G. (2)
  • Sarić, Gordana (1)
Projects

Author's Bibliography

What is the preferred geometry of sulfur–disulfide interactions?

Veljković, Ivana S.; Veljković, Dušan; Sarić, Gordana G.; Stanković, Ivana M.; Zarić, Snežana D.

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Veljković, Ivana S.
AU  - Veljković, Dušan
AU  - Sarić, Gordana G.
AU  - Stanković, Ivana M.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3987
AB  - Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.

Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - What is the preferred geometry of sulfur–disulfide interactions?
VL  - 22
SP  - 7262
EP  - 7271
DO  - 10.1039/D0CE00211A
ER  - 
@article{
author = "Veljković, Ivana S. and Veljković, Dušan and Sarić, Gordana G. and Stanković, Ivana M. and Zarić, Snežana D.",
year = "2020",
abstract = "Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.

Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "What is the preferred geometry of sulfur–disulfide interactions?",
volume = "22",
pages = "7262-7271",
doi = "10.1039/D0CE00211A"
}
Veljković, I. S., Veljković, D., Sarić, G. G., Stanković, I. M.,& Zarić, S. D.. (2020). What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm
Royal Society of Chemistry., 22, 7262-7271.
https://doi.org/10.1039/D0CE00211A
Veljković IS, Veljković D, Sarić GG, Stanković IM, Zarić SD. What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm. 2020;22:7262-7271.
doi:10.1039/D0CE00211A .
Veljković, Ivana S., Veljković, Dušan, Sarić, Gordana G., Stanković, Ivana M., Zarić, Snežana D., "What is the preferred geometry of sulfur–disulfide interactions?" in CrystEngComm, 22 (2020):7262-7271,
https://doi.org/10.1039/D0CE00211A . .
2
2
2

What is the preferred geometry of sulfur–disulfide interactions?

Veljković, Ivana S.; Veljković, Dušan; Sarić, Gordana G.; Stanković, Ivana M.; Zarić, Snežana D.

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Veljković, Ivana S.
AU  - Veljković, Dušan
AU  - Sarić, Gordana G.
AU  - Stanković, Ivana M.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3990
AB  - Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - What is the preferred geometry of sulfur–disulfide interactions?
VL  - 22
SP  - 7262
EP  - 7271
DO  - 10.1039/D0CE00211A
ER  - 
@article{
author = "Veljković, Ivana S. and Veljković, Dušan and Sarić, Gordana G. and Stanković, Ivana M. and Zarić, Snežana D.",
year = "2020",
abstract = "Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "What is the preferred geometry of sulfur–disulfide interactions?",
volume = "22",
pages = "7262-7271",
doi = "10.1039/D0CE00211A"
}
Veljković, I. S., Veljković, D., Sarić, G. G., Stanković, I. M.,& Zarić, S. D.. (2020). What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm
Royal Society of Chemistry., 22, 7262-7271.
https://doi.org/10.1039/D0CE00211A
Veljković IS, Veljković D, Sarić GG, Stanković IM, Zarić SD. What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm. 2020;22:7262-7271.
doi:10.1039/D0CE00211A .
Veljković, Ivana S., Veljković, Dušan, Sarić, Gordana G., Stanković, Ivana M., Zarić, Snežana D., "What is the preferred geometry of sulfur–disulfide interactions?" in CrystEngComm, 22 (2020):7262-7271,
https://doi.org/10.1039/D0CE00211A . .
2
2
2

Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond

Antonijević, Ivana; Veljković, Dušan; Sarić, Gordana; Katančević, Katarina; Zarić, Snežana

(Serbian Crystallographic Society, 2018)

TY  - CONF
AU  - Antonijević, Ivana
AU  - Veljković, Dušan
AU  - Sarić, Gordana
AU  - Katančević, Katarina
AU  - Zarić, Snežana
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6605
AB  - In this work geometries and energies of interactions between sulfur and disulfide bond were investigated using statistical analysis of data obtained by searching the Cambrige Structural Database (CSD) and quantum chemical calculations.
PB  - Serbian Crystallographic Society
C3  - XXV Conference of the Serbian Crystallographic Society, Abstracts, Bajina Bašta / XXV Konferencija Srpskog kristalografskog društva, Izvodi radova, Bajina Bašta
T1  - Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond
SP  - 67
EP  - 67
UR  - https://hdl.handle.net/21.15107/rcub_cer_6605
ER  - 
@conference{
author = "Antonijević, Ivana and Veljković, Dušan and Sarić, Gordana and Katančević, Katarina and Zarić, Snežana",
year = "2018",
abstract = "In this work geometries and energies of interactions between sulfur and disulfide bond were investigated using statistical analysis of data obtained by searching the Cambrige Structural Database (CSD) and quantum chemical calculations.",
publisher = "Serbian Crystallographic Society",
journal = "XXV Conference of the Serbian Crystallographic Society, Abstracts, Bajina Bašta / XXV Konferencija Srpskog kristalografskog društva, Izvodi radova, Bajina Bašta",
title = "Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond",
pages = "67-67",
url = "https://hdl.handle.net/21.15107/rcub_cer_6605"
}
Antonijević, I., Veljković, D., Sarić, G., Katančević, K.,& Zarić, S.. (2018). Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond. in XXV Conference of the Serbian Crystallographic Society, Abstracts, Bajina Bašta / XXV Konferencija Srpskog kristalografskog društva, Izvodi radova, Bajina Bašta
Serbian Crystallographic Society., 67-67.
https://hdl.handle.net/21.15107/rcub_cer_6605
Antonijević I, Veljković D, Sarić G, Katančević K, Zarić S. Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond. in XXV Conference of the Serbian Crystallographic Society, Abstracts, Bajina Bašta / XXV Konferencija Srpskog kristalografskog društva, Izvodi radova, Bajina Bašta. 2018;:67-67.
https://hdl.handle.net/21.15107/rcub_cer_6605 .
Antonijević, Ivana, Veljković, Dušan, Sarić, Gordana, Katančević, Katarina, Zarić, Snežana, "Crystallographic and quantum-chemical study of interactions between sulfur and disulfide bond" in XXV Conference of the Serbian Crystallographic Society, Abstracts, Bajina Bašta / XXV Konferencija Srpskog kristalografskog društva, Izvodi radova, Bajina Bašta (2018):67-67,
https://hdl.handle.net/21.15107/rcub_cer_6605 .