Mitić, Vojislav V.

Link to this page

Authority KeyName Variants
1bd3ad00-d70b-4378-9d50-b9f0d21ebac4
  • Mitić, Vojislav V. (11)
  • Mitić, Vojislav (1)

Author's Bibliography

Reconstruction of fiber reinforcement in epoxy-based composite

Stajčić, Aleksandar; Mitić, Vojislav; Serpa, Cristina; Randjelović, Branislav; Radović, Ivana

(Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering, 2021)

TY  - CONF
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav
AU  - Serpa, Cristina
AU  - Randjelović, Branislav
AU  - Radović, Ivana
PY  - 2021
UR  - https://www.etran.rs/2021/en/proceedings/
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4925
AB  - Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.
PB  - Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering
C3  - Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
T1  - Reconstruction of fiber reinforcement in epoxy-based composite
UR  - https://hdl.handle.net/21.15107/rcub_cer_4925
ER  - 
@conference{
author = "Stajčić, Aleksandar and Mitić, Vojislav and Serpa, Cristina and Randjelović, Branislav and Radović, Ivana",
year = "2021",
abstract = "Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.",
publisher = "Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering",
journal = "Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020",
title = "Reconstruction of fiber reinforcement in epoxy-based composite",
url = "https://hdl.handle.net/21.15107/rcub_cer_4925"
}
Stajčić, A., Mitić, V., Serpa, C., Randjelović, B.,& Radović, I.. (2021). Reconstruction of fiber reinforcement in epoxy-based composite. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering..
https://hdl.handle.net/21.15107/rcub_cer_4925
Stajčić A, Mitić V, Serpa C, Randjelović B, Radović I. Reconstruction of fiber reinforcement in epoxy-based composite. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020. 2021;.
https://hdl.handle.net/21.15107/rcub_cer_4925 .
Stajčić, Aleksandar, Mitić, Vojislav, Serpa, Cristina, Randjelović, Branislav, Radović, Ivana, "Reconstruction of fiber reinforcement in epoxy-based composite" in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020 (2021),
https://hdl.handle.net/21.15107/rcub_cer_4925 .

Fractal reconstruction of fiber-reinforced polymer composites

Radović, Ivana; Mitić, Vojislav V.; Stajčić, Aleksandar; Serpa, Cristina; Ribar, Srđan; Ranđelović, Branislav; Vlahović, Branislav

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Radović, Ivana
AU  - Mitić, Vojislav V.
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Ribar, Srđan
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4899
AB  - Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.
PB  - Belgrade : Serbian Chemical Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
T1  - Fractal reconstruction of fiber-reinforced polymer composites
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_12361
ER  - 
@conference{
author = "Radović, Ivana and Mitić, Vojislav V. and Stajčić, Aleksandar and Serpa, Cristina and Ribar, Srđan and Ranđelović, Branislav and Vlahović, Branislav",
year = "2021",
abstract = "Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing",
title = "Fractal reconstruction of fiber-reinforced polymer composites",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_12361"
}
Radović, I., Mitić, V. V., Stajčić, A., Serpa, C., Ribar, S., Ranđelović, B.,& Vlahović, B.. (2021). Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
Belgrade : Serbian Chemical Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361
Radović I, Mitić VV, Stajčić A, Serpa C, Ribar S, Ranđelović B, Vlahović B. Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361 .
Radović, Ivana, Mitić, Vojislav V., Stajčić, Aleksandar, Serpa, Cristina, Ribar, Srđan, Ranđelović, Branislav, Vlahović, Branislav, "Fractal reconstruction of fiber-reinforced polymer composites" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing (2021):49-49,
https://hdl.handle.net/21.15107/rcub_dais_12361 .

Magnetic materials, Curie-Weiss law and fractal correction

Mitić, Vojislav V.; Serpa, Kristina; Stajčić, Aleksandar; Khamoushi, Kouros; Paunović, Vesna; Aleksić, Sanja; Vlahović, Branislav

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Serpa, Kristina
AU  - Stajčić, Aleksandar
AU  - Khamoushi, Kouros
AU  - Paunović, Vesna
AU  - Aleksić, Sanja
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4898
AB  - Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and
dielectric properties. Considering the microstructure influence NZT stability and
performance, it is of great importance to establish an approach for the analysis and prediction
of grain boundary phenomena. The fractal nature analysis has already proved to be valuable
for the reconstruction and prediction of ceramics intergranular electrical properties. However,
no researches were performed on the fractal analysis applied on magnetic materials. This
method could give an insight in magnetic properties change from the bulk to the grain
interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction,
introducing fractal correction into magnetic materials for the first time. NZT powders used in
this research for fractal analysis were obtained after sintering at different temperatures in the
range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the
resulting magnetic permeability has been established, enabling the application on different
magnetic materials in the future. This creates a foundation for new researches that will lead to
further miniaturization of satellite and mobile devices.
PB  - Belgrade : Serbian Chemical Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Magnetic materials, Curie-Weiss law and fractal correction
SP  - 46
EP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_11907
ER  - 
@conference{
author = "Mitić, Vojislav V. and Serpa, Kristina and Stajčić, Aleksandar and Khamoushi, Kouros and Paunović, Vesna and Aleksić, Sanja and Vlahović, Branislav",
year = "2021",
abstract = "Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and
dielectric properties. Considering the microstructure influence NZT stability and
performance, it is of great importance to establish an approach for the analysis and prediction
of grain boundary phenomena. The fractal nature analysis has already proved to be valuable
for the reconstruction and prediction of ceramics intergranular electrical properties. However,
no researches were performed on the fractal analysis applied on magnetic materials. This
method could give an insight in magnetic properties change from the bulk to the grain
interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction,
introducing fractal correction into magnetic materials for the first time. NZT powders used in
this research for fractal analysis were obtained after sintering at different temperatures in the
range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the
resulting magnetic permeability has been established, enabling the application on different
magnetic materials in the future. This creates a foundation for new researches that will lead to
further miniaturization of satellite and mobile devices.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Magnetic materials, Curie-Weiss law and fractal correction",
pages = "46-46",
url = "https://hdl.handle.net/21.15107/rcub_dais_11907"
}
Mitić, V. V., Serpa, K., Stajčić, A., Khamoushi, K., Paunović, V., Aleksić, S.,& Vlahović, B.. (2021). Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Chemical Society., 46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907
Mitić VV, Serpa K, Stajčić A, Khamoushi K, Paunović V, Aleksić S, Vlahović B. Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907 .
Mitić, Vojislav V., Serpa, Kristina, Stajčić, Aleksandar, Khamoushi, Kouros, Paunović, Vesna, Aleksić, Sanja, Vlahović, Branislav, "Magnetic materials, Curie-Weiss law and fractal correction" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):46-46,
https://hdl.handle.net/21.15107/rcub_dais_11907 .

The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics

Mitić, Vojislav V.; Ranđelović, Branislav; Ilić, Ivana; Ribar, Srđan; Chun, An-Lu; Stajčić, Aleksandar; Vlahović, Branislav

(World Scientific Publishing Co, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Ribar, Srđan
AU  - Chun, An-Lu
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4809
AB  - After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.
PB  - World Scientific Publishing Co
T2  - International Journal of Modern Physics B
T1  - The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics
VL  - 35
IS  - 7
SP  - 2150103
DO  - 10.1142/S0217979221501034
ER  - 
@article{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ilić, Ivana and Ribar, Srđan and Chun, An-Lu and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.",
publisher = "World Scientific Publishing Co",
journal = "International Journal of Modern Physics B",
title = "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics",
volume = "35",
number = "7",
pages = "2150103",
doi = "10.1142/S0217979221501034"
}
Mitić, V. V., Ranđelović, B., Ilić, I., Ribar, S., Chun, A., Stajčić, A.,& Vlahović, B.. (2021). The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B
World Scientific Publishing Co., 35(7), 2150103.
https://doi.org/10.1142/S0217979221501034
Mitić VV, Ranđelović B, Ilić I, Ribar S, Chun A, Stajčić A, Vlahović B. The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B. 2021;35(7):2150103.
doi:10.1142/S0217979221501034 .
Mitić, Vojislav V., Ranđelović, Branislav, Ilić, Ivana, Ribar, Srđan, Chun, An-Lu, Stajčić, Aleksandar, Vlahović, Branislav, "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics" in International Journal of Modern Physics B, 35, no. 7 (2021):2150103,
https://doi.org/10.1142/S0217979221501034 . .
7
3
7

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4837
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
VL  - 570
IS  - 1
SP  - 145
EP  - 152
DO  - 10.1080/00150193.2020.1839265
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
volume = "570",
number = "1",
pages = "145-152",
doi = "10.1080/00150193.2020.1839265"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 . .
15
4
15

Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure

Radović, Ivan M.; Stajčić, Aleksandar; Mitić, Vojislav V.; Serpa, C.; Paunović, V.; Ranđelović, Branislav

(Institute of Electrical and Electronics Engineers Inc., 2021)

TY  - CONF
AU  - Radović, Ivan M.
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav V.
AU  - Serpa, C.
AU  - Paunović, V.
AU  - Ranđelović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4843
AB  - In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.
PB  - Institute of Electrical and Electronics Engineers Inc.
C3  - 32nd IEEE International Conference on Microelectronics, MIEL 2021
T1  - Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure
SP  - 203
EP  - 206
DO  - 10.1109/MIEL52794.2021.9569054
ER  - 
@conference{
author = "Radović, Ivan M. and Stajčić, Aleksandar and Mitić, Vojislav V. and Serpa, C. and Paunović, V. and Ranđelović, Branislav",
year = "2021",
abstract = "In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
journal = "32nd IEEE International Conference on Microelectronics, MIEL 2021",
title = "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure",
pages = "203-206",
doi = "10.1109/MIEL52794.2021.9569054"
}
Radović, I. M., Stajčić, A., Mitić, V. V., Serpa, C., Paunović, V.,& Ranđelović, B.. (2021). Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021
Institute of Electrical and Electronics Engineers Inc.., 203-206.
https://doi.org/10.1109/MIEL52794.2021.9569054
Radović IM, Stajčić A, Mitić VV, Serpa C, Paunović V, Ranđelović B. Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021. 2021;:203-206.
doi:10.1109/MIEL52794.2021.9569054 .
Radović, Ivan M., Stajčić, Aleksandar, Mitić, Vojislav V., Serpa, C., Paunović, V., Ranđelović, Branislav, "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure" in 32nd IEEE International Conference on Microelectronics, MIEL 2021 (2021):203-206,
https://doi.org/10.1109/MIEL52794.2021.9569054 . .
2
2

Solvent effects on structural changes in self-healing epoxy composites

Radović, Ivana; Stajčić, Aleksandar; Radisavljević, Andjela; Veljković, Filip; Čebela, Maria; Mitić, Vojislav V.; Radojević, Vesna

(Elsevier, 2020)

TY  - JOUR
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Radisavljević, Andjela
AU  - Veljković, Filip
AU  - Čebela, Maria
AU  - Mitić, Vojislav V.
AU  - Radojević, Vesna
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3676
AB  - Nowadays, there is a very high importance of composite research and variety of their applications in the modern world. In that sense, we researched hollow glass capillaries filled with dissolved Grubbs catalyst (GC) and dicyclopentadiene (DCPD) were incorporated into a fiber-reinforced epoxy with the aim of improving the flow of healing agents to the crack site. The morphological investigation of the crack site was performed using field emission scanning electron microscopy (FESEM), showing the difference between the samples depending on the used solvent. The software analysis of sample photographs has been performed by calculating the fractured/ healed surface area of the samples, revealing that approximately 20% of the volume was affected by the impact. Fourier transform infrared spectroscopy (FTIR) revealed that poly (dicyclopentadiene) (PDCPD) formed at the healed interface. However, the FTIR investigation of catalyst stability in different solvents showed structural changes in GC and partial deactivation. The mechanical tests of the samples showed that a recovery of 60% after 24 h at room temperature could be achieved through the use of a solvent and very low concentration of GC. The performed research results are a good base to develop the model for predicting the processes and morphology, with the goal to design the final mechanical and in the future, thermal, properties in advance. This opens a new direction for future research in the field of composite healing.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Solvent effects on structural changes in self-healing epoxy composites
VL  - 256
SP  - 123761
DO  - 10.1016/j.matchemphys.2020.123761
ER  - 
@article{
author = "Radović, Ivana and Stajčić, Aleksandar and Radisavljević, Andjela and Veljković, Filip and Čebela, Maria and Mitić, Vojislav V. and Radojević, Vesna",
year = "2020",
abstract = "Nowadays, there is a very high importance of composite research and variety of their applications in the modern world. In that sense, we researched hollow glass capillaries filled with dissolved Grubbs catalyst (GC) and dicyclopentadiene (DCPD) were incorporated into a fiber-reinforced epoxy with the aim of improving the flow of healing agents to the crack site. The morphological investigation of the crack site was performed using field emission scanning electron microscopy (FESEM), showing the difference between the samples depending on the used solvent. The software analysis of sample photographs has been performed by calculating the fractured/ healed surface area of the samples, revealing that approximately 20% of the volume was affected by the impact. Fourier transform infrared spectroscopy (FTIR) revealed that poly (dicyclopentadiene) (PDCPD) formed at the healed interface. However, the FTIR investigation of catalyst stability in different solvents showed structural changes in GC and partial deactivation. The mechanical tests of the samples showed that a recovery of 60% after 24 h at room temperature could be achieved through the use of a solvent and very low concentration of GC. The performed research results are a good base to develop the model for predicting the processes and morphology, with the goal to design the final mechanical and in the future, thermal, properties in advance. This opens a new direction for future research in the field of composite healing.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Solvent effects on structural changes in self-healing epoxy composites",
volume = "256",
pages = "123761",
doi = "10.1016/j.matchemphys.2020.123761"
}
Radović, I., Stajčić, A., Radisavljević, A., Veljković, F., Čebela, M., Mitić, V. V.,& Radojević, V.. (2020). Solvent effects on structural changes in self-healing epoxy composites. in Materials Chemistry and Physics
Elsevier., 256, 123761.
https://doi.org/10.1016/j.matchemphys.2020.123761
Radović I, Stajčić A, Radisavljević A, Veljković F, Čebela M, Mitić VV, Radojević V. Solvent effects on structural changes in self-healing epoxy composites. in Materials Chemistry and Physics. 2020;256:123761.
doi:10.1016/j.matchemphys.2020.123761 .
Radović, Ivana, Stajčić, Aleksandar, Radisavljević, Andjela, Veljković, Filip, Čebela, Maria, Mitić, Vojislav V., Radojević, Vesna, "Solvent effects on structural changes in self-healing epoxy composites" in Materials Chemistry and Physics, 256 (2020):123761,
https://doi.org/10.1016/j.matchemphys.2020.123761 . .
16
2
15

Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization

Dodevski, Vladimir; Pagnacco, Maja; Radović, Ivana; Rosić, Milena; Janković, Bojan; Stojmenović, Marija; Mitić, Vojislav V.

(Elsevier, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Pagnacco, Maja
AU  - Radović, Ivana
AU  - Rosić, Milena
AU  - Janković, Bojan
AU  - Stojmenović, Marija
AU  - Mitić, Vojislav V.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3436
AB  - The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization
VL  - 245
SP  - 122768
DO  - 10.1016/j.matchemphys.2020.122768
ER  - 
@article{
author = "Dodevski, Vladimir and Pagnacco, Maja and Radović, Ivana and Rosić, Milena and Janković, Bojan and Stojmenović, Marija and Mitić, Vojislav V.",
year = "2020",
abstract = "The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization",
volume = "245",
pages = "122768",
doi = "10.1016/j.matchemphys.2020.122768"
}
Dodevski, V., Pagnacco, M., Radović, I., Rosić, M., Janković, B., Stojmenović, M.,& Mitić, V. V.. (2020). Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics
Elsevier., 245, 122768.
https://doi.org/10.1016/j.matchemphys.2020.122768
Dodevski V, Pagnacco M, Radović I, Rosić M, Janković B, Stojmenović M, Mitić VV. Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. in Materials Chemistry and Physics. 2020;245:122768.
doi:10.1016/j.matchemphys.2020.122768 .
Dodevski, Vladimir, Pagnacco, Maja, Radović, Ivana, Rosić, Milena, Janković, Bojan, Stojmenović, Marija, Mitić, Vojislav V., "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization" in Materials Chemistry and Physics, 245 (2020):122768,
https://doi.org/10.1016/j.matchemphys.2020.122768 . .
1
10
4
9

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3584
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.
PB  - MDPI
T2  - Applied Sciences
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
VL  - 10
SP  - 3485
DO  - 10.3390/app10103485
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.",
publisher = "MDPI",
journal = "Applied Sciences",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
volume = "10",
pages = "3485",
doi = "10.3390/app10103485"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences
MDPI., 10, 3485.
https://doi.org/10.3390/app10103485
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences. 2020;10:3485.
doi:10.3390/app10103485 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" in Applied Sciences, 10 (2020):3485,
https://doi.org/10.3390/app10103485 . .
4
1
4

The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination

Mitić, Vojislav V.; Lazović, Goran; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Fecht, Hans; Vlahović, Branislav

(Taylor & Francis, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Fecht, Hans
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4004
AB  - This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.
PB  - Taylor & Francis
T2  - Integrated Ferroelectrics
T1  - The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination
VL  - 212
IS  - 1
SP  - 135
EP  - 146
DO  - 10.1080/10584587.2020.1819042
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Fecht, Hans and Vlahović, Branislav",
year = "2020",
abstract = "This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.",
publisher = "Taylor & Francis",
journal = "Integrated Ferroelectrics",
title = "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination",
volume = "212",
number = "1",
pages = "135-146",
doi = "10.1080/10584587.2020.1819042"
}
Mitić, V. V., Lazović, G., Ribar, S., Lu, C., Radović, I., Stajčić, A., Fecht, H.,& Vlahović, B.. (2020). The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics
Taylor & Francis., 212(1), 135-146.
https://doi.org/10.1080/10584587.2020.1819042
Mitić VV, Lazović G, Ribar S, Lu C, Radović I, Stajčić A, Fecht H, Vlahović B. The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics. 2020;212(1):135-146.
doi:10.1080/10584587.2020.1819042 .
Mitić, Vojislav V., Lazović, Goran, Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Fecht, Hans, Vlahović, Branislav, "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination" in Integrated Ferroelectrics, 212, no. 1 (2020):135-146,
https://doi.org/10.1080/10584587.2020.1819042 . .
11
4
10

Ceramics, materials, microelectronics and graph theory new frontiers

Radjenovic, Branislav; Mitić, Vojislav V.; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Novaković, Igor; Vlahović, Branislav

(World Scientific, 2020)

TY  - JOUR
AU  - Radjenovic, Branislav
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4005
AB  - This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.
PB  - World Scientific
T2  - Modern Physics Letters B
T1  - Ceramics, materials, microelectronics and graph theory new frontiers
SP  - 2150159
DO  - 10.1142/S0217984921501591
ER  - 
@article{
author = "Radjenovic, Branislav and Mitić, Vojislav V. and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.",
publisher = "World Scientific",
journal = "Modern Physics Letters B",
title = "Ceramics, materials, microelectronics and graph theory new frontiers",
pages = "2150159",
doi = "10.1142/S0217984921501591"
}
Radjenovic, B., Mitić, V. V., Ribar, S., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B
World Scientific., 2150159.
https://doi.org/10.1142/S0217984921501591
Radjenovic B, Mitić VV, Ribar S, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B. 2020;:2150159.
doi:10.1142/S0217984921501591 .
Radjenovic, Branislav, Mitić, Vojislav V., Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Ceramics, materials, microelectronics and graph theory new frontiers" in Modern Physics Letters B (2020):2150159,
https://doi.org/10.1142/S0217984921501591 . .
10
5

Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage

Mitić, Vojislav V.; Ribar, Srđan; Randjelović, Branislav M.; Lu, Chunan; Radović, Ivana; Stajčić, Aleksandar; Novaković, Igor; Vlahović, Branislav

(World Scientific, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Randjelović, Branislav M.
AU  - Lu, Chunan
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4242
AB  - This research is based on the idea to design the interface structure around the grains and thin layers between two grains, as a possible solution for deep microelectronic parameters integrations. The experiments have been based on nano-BaTiO3 powders with Y-based additive. The advanced idea is to create the new observed directions to network microelectronic characteristics in thin films coated around and between the grains on the way to get and compare with global results on the samples. Biomimetic similarities are artificial neural networks which could be original method and tools that we use to map input-output data and could be applied on ceramics microelectronic parameters. This mapping is developed in the manner like signals that are processed in real biological neural networks. These signals are processed by using artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which represents sensitivity to inputs. The integrated network output presents practically the large number of inner neurons outputs sum. This original idea is to connect analysis results and neural networks. It is of the great importance to connect microcapacitances by neural network with the goal to compare the experimental results in the bulk samples measurements and microelectronics parameters. The result of these researches is the study of functional relation definition between consolidation parameters, voltage (U), consolidation sintering temperature and relative capacitance change, from the bulk sample surface down to the coating thin films around the grains.
PB  - World Scientific
T2  - Modern Physics Letters B
T1  - Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage
VL  - 34
IS  - 35
SP  - 2150172
DO  - 10.1142/S0217984921501724
ER  - 
@article{
author = "Mitić, Vojislav V. and Ribar, Srđan and Randjelović, Branislav M. and Lu, Chunan and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is based on the idea to design the interface structure around the grains and thin layers between two grains, as a possible solution for deep microelectronic parameters integrations. The experiments have been based on nano-BaTiO3 powders with Y-based additive. The advanced idea is to create the new observed directions to network microelectronic characteristics in thin films coated around and between the grains on the way to get and compare with global results on the samples. Biomimetic similarities are artificial neural networks which could be original method and tools that we use to map input-output data and could be applied on ceramics microelectronic parameters. This mapping is developed in the manner like signals that are processed in real biological neural networks. These signals are processed by using artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which represents sensitivity to inputs. The integrated network output presents practically the large number of inner neurons outputs sum. This original idea is to connect analysis results and neural networks. It is of the great importance to connect microcapacitances by neural network with the goal to compare the experimental results in the bulk samples measurements and microelectronics parameters. The result of these researches is the study of functional relation definition between consolidation parameters, voltage (U), consolidation sintering temperature and relative capacitance change, from the bulk sample surface down to the coating thin films around the grains.",
publisher = "World Scientific",
journal = "Modern Physics Letters B",
title = "Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage",
volume = "34",
number = "35",
pages = "2150172",
doi = "10.1142/S0217984921501724"
}
Mitić, V. V., Ribar, S., Randjelović, B. M., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage. in Modern Physics Letters B
World Scientific., 34(35), 2150172.
https://doi.org/10.1142/S0217984921501724
Mitić VV, Ribar S, Randjelović BM, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage. in Modern Physics Letters B. 2020;34(35):2150172.
doi:10.1142/S0217984921501724 .
Mitić, Vojislav V., Ribar, Srđan, Randjelović, Branislav M., Lu, Chunan, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Neural networks and microelectronics parameters distribution measurements depending on sintering temperature and applied voltage" in Modern Physics Letters B, 34, no. 35 (2020):2150172,
https://doi.org/10.1142/S0217984921501724 . .
13
4
13