Rupar, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0001-5451-8516
  • Rupar, Jelena (1)
Projects

Author's Bibliography

Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors

Rupar, Jelena; Bajuk-Bogdanović, Danica; Milojević-Rakić, Maja; Krstić, Jugoslav; Upadhyay, Kush; Gavrilov, Nemanja; Janošević-Ležaić, Aleksandra

(Elsevier, 2022)

TY  - JOUR
AU  - Rupar, Jelena
AU  - Bajuk-Bogdanović, Danica
AU  - Milojević-Rakić, Maja
AU  - Krstić, Jugoslav
AU  - Upadhyay, Kush
AU  - Gavrilov, Nemanja
AU  - Janošević-Ležaić, Aleksandra
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5255
AB  - Here, we propose a novel, electrochemical preparation of in situ N-doped alginate-based carbon precursors with monodispersed zinc ions. Obtained carbons were evaluated by spectroscopic (FTIR, Raman and XPS), textural (N2 physisorption), microscopic (TEM) and elemental (SEM-EDS) descriptors to establish their distinctive fea- tures originating from different synthetic procedures. Carbons characteristics were assessed in view of several carbonization temperatures applied for their preparation from alginate precursors, and individual and joint effect of zinc and nitrogen on the precursor. Obtained Zn monodispersion, emphasizes the significance of electro- chemical preparation, allowing increasing temperature to induce changes from its ionic form to carbonate and oxide, while at 800 ◦C ZnO further reduces and evaporates. Since homogeneously dispersed Zn species acts as porosity evolving agent during carbonization, a substantial surface area is developed, in the range 718–1056 m2 g
PB  - Elsevier
T2  - Microporous and Mesoporous Materials
T1  - Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors
VL  - 335
DO  - 10.1016/j.micromeso.2022.111790
ER  - 
@article{
author = "Rupar, Jelena and Bajuk-Bogdanović, Danica and Milojević-Rakić, Maja and Krstić, Jugoslav and Upadhyay, Kush and Gavrilov, Nemanja and Janošević-Ležaić, Aleksandra",
year = "2022",
abstract = "Here, we propose a novel, electrochemical preparation of in situ N-doped alginate-based carbon precursors with monodispersed zinc ions. Obtained carbons were evaluated by spectroscopic (FTIR, Raman and XPS), textural (N2 physisorption), microscopic (TEM) and elemental (SEM-EDS) descriptors to establish their distinctive fea- tures originating from different synthetic procedures. Carbons characteristics were assessed in view of several carbonization temperatures applied for their preparation from alginate precursors, and individual and joint effect of zinc and nitrogen on the precursor. Obtained Zn monodispersion, emphasizes the significance of electro- chemical preparation, allowing increasing temperature to induce changes from its ionic form to carbonate and oxide, while at 800 ◦C ZnO further reduces and evaporates. Since homogeneously dispersed Zn species acts as porosity evolving agent during carbonization, a substantial surface area is developed, in the range 718–1056 m2 g",
publisher = "Elsevier",
journal = "Microporous and Mesoporous Materials",
title = "Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors",
volume = "335",
doi = "10.1016/j.micromeso.2022.111790"
}
Rupar, J., Bajuk-Bogdanović, D., Milojević-Rakić, M., Krstić, J., Upadhyay, K., Gavrilov, N.,& Janošević-Ležaić, A.. (2022). Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors. in Microporous and Mesoporous Materials
Elsevier., 335.
https://doi.org/10.1016/j.micromeso.2022.111790
Rupar J, Bajuk-Bogdanović D, Milojević-Rakić M, Krstić J, Upadhyay K, Gavrilov N, Janošević-Ležaić A. Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors. in Microporous and Mesoporous Materials. 2022;335.
doi:10.1016/j.micromeso.2022.111790 .
Rupar, Jelena, Bajuk-Bogdanović, Danica, Milojević-Rakić, Maja, Krstić, Jugoslav, Upadhyay, Kush, Gavrilov, Nemanja, Janošević-Ležaić, Aleksandra, "Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors" in Microporous and Mesoporous Materials, 335 (2022),
https://doi.org/10.1016/j.micromeso.2022.111790 . .
6
6