Savić, Marjetka

Link to this page

Authority KeyName Variants
c1124b70-e78c-4c9f-8780-bfd0628a0940
  • Savić, Marjetka (2)

Author's Bibliography

Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?

Jevremović, Anka; Savić, Marjetka; Janošević Ležaić, Aleksandra; Krstić, Jugoslav; Gavrilov, Nemanja; Bajuk-Bogdanović, Danica; Milojević-Rakić, Maja; Ćirić-Marjanović, Gordana

(2023)

TY  - JOUR
AU  - Jevremović, Anka
AU  - Savić, Marjetka
AU  - Janošević Ležaić, Aleksandra
AU  - Krstić, Jugoslav
AU  - Gavrilov, Nemanja
AU  - Bajuk-Bogdanović, Danica
AU  - Milojević-Rakić, Maja
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7163
AB  - The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.
T2  - Polymers
T1  - Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?
VL  - 15
IS  - 22
SP  - 4349
DO  - 10.3390/polym15224349
ER  - 
@article{
author = "Jevremović, Anka and Savić, Marjetka and Janošević Ležaić, Aleksandra and Krstić, Jugoslav and Gavrilov, Nemanja and Bajuk-Bogdanović, Danica and Milojević-Rakić, Maja and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.",
journal = "Polymers",
title = "Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?",
volume = "15",
number = "22",
pages = "4349",
doi = "10.3390/polym15224349"
}
Jevremović, A., Savić, M., Janošević Ležaić, A., Krstić, J., Gavrilov, N., Bajuk-Bogdanović, D., Milojević-Rakić, M.,& Ćirić-Marjanović, G.. (2023). Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?. in Polymers, 15(22), 4349.
https://doi.org/10.3390/polym15224349
Jevremović A, Savić M, Janošević Ležaić A, Krstić J, Gavrilov N, Bajuk-Bogdanović D, Milojević-Rakić M, Ćirić-Marjanović G. Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?. in Polymers. 2023;15(22):4349.
doi:10.3390/polym15224349 .
Jevremović, Anka, Savić, Marjetka, Janošević Ležaić, Aleksandra, Krstić, Jugoslav, Gavrilov, Nemanja, Bajuk-Bogdanović, Danica, Milojević-Rakić, Maja, Ćirić-Marjanović, Gordana, "Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?" in Polymers, 15, no. 22 (2023):4349,
https://doi.org/10.3390/polym15224349 . .
1
1

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Savić, Marjetka; Janošević Ležaić, Aleksandra; Gavrilov, Nemanja; Pašti, Igor; Nedić Vasiljević, Bojana; Krstić, Jugoslav; Ćirić-Marjanović, Gordana

(Switzerland : Multidisciplinary Digital Publishing Institute (MDPI), 2023)

TY  - JOUR
AU  - Savić, Marjetka
AU  - Janošević Ležaić, Aleksandra
AU  - Gavrilov, Nemanja
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Krstić, Jugoslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5653
AB  - Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest
as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped
carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),
synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.
The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,
molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical
behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by
the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)
or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to
S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline
phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to
609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F
g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–
10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching
treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.
The developed composites represent promising electrode materials for supercapacitors.
PB  - Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - Materials
T1  - Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity
VL  - 16
IS  - 3
SP  - 1018
DO  - 10.3390/ma16031018
ER  - 
@article{
author = "Savić, Marjetka and Janošević Ležaić, Aleksandra and Gavrilov, Nemanja and Pašti, Igor and Nedić Vasiljević, Bojana and Krstić, Jugoslav and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest
as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped
carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),
synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.
The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,
molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical
behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by
the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)
or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to
S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline
phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to
609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F
g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–
10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching
treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.
The developed composites represent promising electrode materials for supercapacitors.",
publisher = "Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "Materials",
title = "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity",
volume = "16",
number = "3",
pages = "1018",
doi = "10.3390/ma16031018"
}
Savić, M., Janošević Ležaić, A., Gavrilov, N., Pašti, I., Nedić Vasiljević, B., Krstić, J.,& Ćirić-Marjanović, G.. (2023). Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials
Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)., 16(3), 1018.
https://doi.org/10.3390/ma16031018
Savić M, Janošević Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials. 2023;16(3):1018.
doi:10.3390/ma16031018 .
Savić, Marjetka, Janošević Ležaić, Aleksandra, Gavrilov, Nemanja, Pašti, Igor, Nedić Vasiljević, Bojana, Krstić, Jugoslav, Ćirić-Marjanović, Gordana, "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity" in Materials, 16, no. 3 (2023):1018,
https://doi.org/10.3390/ma16031018 . .
5