Popadić, Daliborka

Link to this page

Authority KeyName Variants
8f07cb31-444b-4602-ac01-3ca892904808
  • Popadić, Daliborka (2)

Author's Bibliography

Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage

Popadić, Daliborka; Krstić, Jugoslav; Janošević-Ležaić, Aleksandra; Popović, Maja; Milojević-Rakić, Maja; Ignjatović, Ljubiša; Bajuk-Bogdanović, Danica; Gavrilov, Nemanja

(Elsevier, 2024)

TY  - JOUR
AU  - Popadić, Daliborka
AU  - Krstić, Jugoslav
AU  - Janošević-Ležaić, Aleksandra
AU  - Popović, Maja
AU  - Milojević-Rakić, Maja
AU  - Ignjatović, Ljubiša
AU  - Bajuk-Bogdanović, Danica
AU  - Gavrilov, Nemanja
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7399
AB  - Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g−1. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.
PB  - Elsevier
T2  - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
T1  - Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage
VL  - 308
SP  - 123772
DO  - 10.1016/j.saa.2023.123772
ER  - 
@article{
author = "Popadić, Daliborka and Krstić, Jugoslav and Janošević-Ležaić, Aleksandra and Popović, Maja and Milojević-Rakić, Maja and Ignjatović, Ljubiša and Bajuk-Bogdanović, Danica and Gavrilov, Nemanja",
year = "2024",
abstract = "Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g−1. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.",
publisher = "Elsevier",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
title = "Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage",
volume = "308",
pages = "123772",
doi = "10.1016/j.saa.2023.123772"
}
Popadić, D., Krstić, J., Janošević-Ležaić, A., Popović, M., Milojević-Rakić, M., Ignjatović, L., Bajuk-Bogdanović, D.,& Gavrilov, N.. (2024). Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Elsevier., 308, 123772.
https://doi.org/10.1016/j.saa.2023.123772
Popadić D, Krstić J, Janošević-Ležaić A, Popović M, Milojević-Rakić M, Ignjatović L, Bajuk-Bogdanović D, Gavrilov N. Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2024;308:123772.
doi:10.1016/j.saa.2023.123772 .
Popadić, Daliborka, Krstić, Jugoslav, Janošević-Ležaić, Aleksandra, Popović, Maja, Milojević-Rakić, Maja, Ignjatović, Ljubiša, Bajuk-Bogdanović, Danica, Gavrilov, Nemanja, "Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage" in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 308 (2024):123772,
https://doi.org/10.1016/j.saa.2023.123772 . .

Spectral evidence of acetamiprid's thermal degradation products and mechanism

Popadić, Daliborka; Gavrilov, Nemanja; Krstić, Jugoslav; Nedić Vasiljević, Bojana; Janošević-Ležaić, Aleksandra; Uskoković-Marković, Snežana; Milojević-Rakić, Maja; Bajuk-Bogdanović, Danica

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Popadić, Daliborka
AU  - Gavrilov, Nemanja
AU  - Krstić, Jugoslav
AU  - Nedić Vasiljević, Bojana
AU  - Janošević-Ležaić, Aleksandra
AU  - Uskoković-Marković, Snežana
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7176
AB  - Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the C[sbnd]C bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the C[sbnd]N bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.
PB  - Elsevier B.V.
T2  - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
T1  - Spectral evidence of acetamiprid's thermal degradation products and mechanism
VL  - 301
IS  - 15
DO  - 10.1016/j.saa.2023.122987
ER  - 
@article{
author = "Popadić, Daliborka and Gavrilov, Nemanja and Krstić, Jugoslav and Nedić Vasiljević, Bojana and Janošević-Ležaić, Aleksandra and Uskoković-Marković, Snežana and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2023",
abstract = "Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the C[sbnd]C bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the C[sbnd]N bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.",
publisher = "Elsevier B.V.",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
title = "Spectral evidence of acetamiprid's thermal degradation products and mechanism",
volume = "301",
number = "15",
doi = "10.1016/j.saa.2023.122987"
}
Popadić, D., Gavrilov, N., Krstić, J., Nedić Vasiljević, B., Janošević-Ležaić, A., Uskoković-Marković, S., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2023). Spectral evidence of acetamiprid's thermal degradation products and mechanism. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Elsevier B.V.., 301(15).
https://doi.org/10.1016/j.saa.2023.122987
Popadić D, Gavrilov N, Krstić J, Nedić Vasiljević B, Janošević-Ležaić A, Uskoković-Marković S, Milojević-Rakić M, Bajuk-Bogdanović D. Spectral evidence of acetamiprid's thermal degradation products and mechanism. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2023;301(15).
doi:10.1016/j.saa.2023.122987 .
Popadić, Daliborka, Gavrilov, Nemanja, Krstić, Jugoslav, Nedić Vasiljević, Bojana, Janošević-Ležaić, Aleksandra, Uskoković-Marković, Snežana, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "Spectral evidence of acetamiprid's thermal degradation products and mechanism" in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 301, no. 15 (2023),
https://doi.org/10.1016/j.saa.2023.122987 . .
3
3