Đokić, Lidija

Link to this page

Authority KeyName Variants
orcid::0000-0003-4723-0527
  • Đokić, Lidija (8)

Author's Bibliography

Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers

Ponjavić, Marijana; Nikolić, Marija S.; Jevtić, Sanja; Jeremić, Sanja; Đokić, Lidija; Đonlagić, Jasna

(Serbia : Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Jevtić, Sanja
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Đonlagić, Jasna
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5392
AB  - The present study reports the potential application of star-shaped poly(ε-caprolactones) with different number of arms as new drug delivery matrix. Linear and star-shaped PCL ibuprofen loaded microspheres were prepared using oil-in-water (o/w) solvent evaporation technique and characterized with FTIR, DSC, XRD and SEM analysis. High yield, encapsulation efficiency and drug loadings were obtained for all microspheres. FTIR analysis revealed the existence of interactions between polymer matrix and drug, while the DSC analysis suggested that drug was encapsulated in an amorphous form. SEM analysis confirmed that regular, spherical in shape star-shaped microspheres, with diameter between 80 and 90 μm, were obtained, while quite larger microspheres, 110 μm, were prepared from linear PCL. The advantage of using star-shaped PCL microspheres instead of linear PCL was seen from drug release profiles which demonstrated higher amount of drug released from star-shaped polymer matrix as a consequence of their branched, flexible structure. Microspheres prepared from the polymers with the most branched structure showed the highest amount of the released drug after 24 h. Finally, cytotoxicity tests, performed using normal human fibroblasts (MRC5), indicated the absence of cytotoxicity at lower concentrations of microspheres proving the great potential of star-shaped PCL systems in comparison to linear ones.
AB  - У оквиру ове студије је приказана потенцијална примена разгранатих поли(ε-кап-
ролактона) са различитим бројем грана као новог полимерног матрикса за уношење
лекова у организам. Микросфере линеарног и разгранатих PCL са инкапсулираним ибу-
профеном су припремљене применом технике отпаравања лако испарљивог растварача
из емулзије “уље у води” (oil-in-water, o/w) и карактерисане помоћу FTIR, DSC, XRD и
SEM анализе. За све микросфере су добијени висок принос, висока ефикасност инкaпсу-
лације и висок садржај лека. FTIR анализом је потврђено постојање интеракција између
полимерног матрикса и лека, док је DSC анализа указала да је лек инкапсулиран у
аморфном облику. SEM анализа је потврдила да су добијене микросфере разгранатих
PCL правилног, сферичног облика, са пречником између 80 до 90 μm, док су знатно веће
микросфере, 110 μm, припремљене од линеарног PCL. Предност употребе микросфера
разгранатих PCL уместо линеарног PCL се види из профила отпуштања лека, који су
показали већу количину отпуштеног лека из микросфера разгранатог полимернe мат-
рице као последица њихове разгранате, флексибилне структуре. Микросфере припре-
мљене од полимера са најразгранитијом структуром су показале највећу количину
отпуштеног лека након 24 h. Тестови цитотоксичности, изведени коришћењем ћелија
нормалних, хуманих фибробласта (MRC5), показали су одсуство цитотоксичности при
нижим концентрацијама микросфера доказујући велики потенцијал разгранатих PCL
система у поређењу са линеарним.
PB  - Serbia : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers
T1  - Разгранати поли (ε-капролактони) са добро одређеном архитектуром као потенцијални носачи лекова
VL  - 87
IS  - 9
SP  - 1075
EP  - 1090
DO  - 10.2298/JSC220202032P
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Jevtić, Sanja and Jeremić, Sanja and Đokić, Lidija and Đonlagić, Jasna",
year = "2022",
abstract = "The present study reports the potential application of star-shaped poly(ε-caprolactones) with different number of arms as new drug delivery matrix. Linear and star-shaped PCL ibuprofen loaded microspheres were prepared using oil-in-water (o/w) solvent evaporation technique and characterized with FTIR, DSC, XRD and SEM analysis. High yield, encapsulation efficiency and drug loadings were obtained for all microspheres. FTIR analysis revealed the existence of interactions between polymer matrix and drug, while the DSC analysis suggested that drug was encapsulated in an amorphous form. SEM analysis confirmed that regular, spherical in shape star-shaped microspheres, with diameter between 80 and 90 μm, were obtained, while quite larger microspheres, 110 μm, were prepared from linear PCL. The advantage of using star-shaped PCL microspheres instead of linear PCL was seen from drug release profiles which demonstrated higher amount of drug released from star-shaped polymer matrix as a consequence of their branched, flexible structure. Microspheres prepared from the polymers with the most branched structure showed the highest amount of the released drug after 24 h. Finally, cytotoxicity tests, performed using normal human fibroblasts (MRC5), indicated the absence of cytotoxicity at lower concentrations of microspheres proving the great potential of star-shaped PCL systems in comparison to linear ones., У оквиру ове студије је приказана потенцијална примена разгранатих поли(ε-кап-
ролактона) са различитим бројем грана као новог полимерног матрикса за уношење
лекова у организам. Микросфере линеарног и разгранатих PCL са инкапсулираним ибу-
профеном су припремљене применом технике отпаравања лако испарљивог растварача
из емулзије “уље у води” (oil-in-water, o/w) и карактерисане помоћу FTIR, DSC, XRD и
SEM анализе. За све микросфере су добијени висок принос, висока ефикасност инкaпсу-
лације и висок садржај лека. FTIR анализом је потврђено постојање интеракција између
полимерног матрикса и лека, док је DSC анализа указала да је лек инкапсулиран у
аморфном облику. SEM анализа је потврдила да су добијене микросфере разгранатих
PCL правилног, сферичног облика, са пречником између 80 до 90 μm, док су знатно веће
микросфере, 110 μm, припремљене од линеарног PCL. Предност употребе микросфера
разгранатих PCL уместо линеарног PCL се види из профила отпуштања лека, који су
показали већу количину отпуштеног лека из микросфера разгранатог полимернe мат-
рице као последица њихове разгранате, флексибилне структуре. Микросфере припре-
мљене од полимера са најразгранитијом структуром су показале највећу количину
отпуштеног лека након 24 h. Тестови цитотоксичности, изведени коришћењем ћелија
нормалних, хуманих фибробласта (MRC5), показали су одсуство цитотоксичности при
нижим концентрацијама микросфера доказујући велики потенцијал разгранатих PCL
система у поређењу са линеарним.",
publisher = "Serbia : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers, Разгранати поли (ε-капролактони) са добро одређеном архитектуром као потенцијални носачи лекова",
volume = "87",
number = "9",
pages = "1075-1090",
doi = "10.2298/JSC220202032P"
}
Ponjavić, M., Nikolić, M. S., Jevtić, S., Jeremić, S., Đokić, L.,& Đonlagić, J.. (2022). Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. in Journal of the Serbian Chemical Society
Serbia : Serbian Chemical Society., 87(9), 1075-1090.
https://doi.org/10.2298/JSC220202032P
Ponjavić M, Nikolić MS, Jevtić S, Jeremić S, Đokić L, Đonlagić J. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. in Journal of the Serbian Chemical Society. 2022;87(9):1075-1090.
doi:10.2298/JSC220202032P .
Ponjavić, Marijana, Nikolić, Marija S., Jevtić, Sanja, Jeremić, Sanja, Đokić, Lidija, Đonlagić, Jasna, "Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers" in Journal of the Serbian Chemical Society, 87, no. 9 (2022):1075-1090,
https://doi.org/10.2298/JSC220202032P . .

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola; Senthamaraikannan, Ramsankar; Babu, Ramesh Padamati; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Elsevier, 2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh Padamati
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3052
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
SP  - 109411
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola and Senthamaraikannan, Ramsankar and Babu, Ramesh Padamati and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
pages = "109411",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology
Elsevier., 132, 109411.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar N, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology. 2020;132:109411.
doi:10.1016/j.enzmictec.2019.109411 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola, Senthamaraikannan, Ramsankar, Babu, Ramesh Padamati, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" in Enzyme and Microbial Technology, 132 (2020):109411,
https://doi.org/10.1016/j.enzmictec.2019.109411 . .
19
6
17

Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli

Simić, Stefan; Božić, Nataša; Đokić, Lidija; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd, 2019)

TY  - CONF
AU  - Simić, Stefan
AU  - Božić, Nataša
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2019
UR  - https://www.shd.org.rs/index.php/abstracts-56
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3302
AB  - Laccases are a versatile class of enzymes with applications ranging from waste valorization to organic synthesis. We have tested whole-cell systems containing bacterial laccase as catalysts in the oxidation of 1,4-dihydropyridines. E. coli was used as the expression host for the cotA gene from Bacillus licheniformis, and the resulting whole-cell catalyst facilitated the oxidation of 1,4-dihydropyridines. It was found that multicopper oxidase CueO from the E. coli expression host also possesses catalytic activity in the oxidation of 1,4-dihydropyridines. The whole-cell biocatalyst expressing Bacillus licheniformis laccase was subsequently immobilized on bacterial nanocellulose and utilized in the same transformation, retaining 37 % of its original activity after three consecutive catalytic runs. This is the first report of a whole-cell catalytic system containing recombinant laccase for the oxidation of 1,4-dihydropyridines.
AB  - Lakaze predstavljalju raznoliku klasu enzima koja nalazi primenu od valorizacije otpada do organske sinteze. U ovom istraživanju ispitivane su cele ćelije koje sadrže bakterijsku lakazu kao katalizator u oksidaciji 1,4-dihidropiridina. Ekspresija cotA gena iz Bacillus licheniformis je izvršena u ćelijama E. coli i za nastali biokatalizator je ustanovljeno da ubrzava oksidaciju 1,4-dihidropiridina. Pored toga, ustanovljeno je da „multicopper“ oksidaza CueO iz E. coli takođe poseduje aktivnost prema oksidaciji 1,4-dihidropiridina. Ekspresioni sistem koji sadrži lakazu iz bakterije Bacillus licheniformis zatim je imobilizovan na bakterijskoj nanocelulozi i upotrebljen je kao katalizator u istoj transformaciji. Takav katalizator je bilo moguće ponovo upotrebiti tri puta, nakon čega je njegova aktivnost iznosila 37 % od početne. Navedeno istraživanje predstavlja prvu primenu celih ćelija sa rekombinantnom lakazom u oksidaciji 1,4-dihidropiridina.
PB  - Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd
C3  - 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova, Niš 7-8.9. 2019.
T1  - Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli
T1  - Oksidacija 1,4-dihidropiridina katalizovana rekombinantnom bakterijskom lakazom eksprimiranom u E. coli
SP  - 88
UR  - https://hdl.handle.net/21.15107/rcub_cer_3302
ER  - 
@conference{
author = "Simić, Stefan and Božić, Nataša and Đokić, Lidija and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2019",
abstract = "Laccases are a versatile class of enzymes with applications ranging from waste valorization to organic synthesis. We have tested whole-cell systems containing bacterial laccase as catalysts in the oxidation of 1,4-dihydropyridines. E. coli was used as the expression host for the cotA gene from Bacillus licheniformis, and the resulting whole-cell catalyst facilitated the oxidation of 1,4-dihydropyridines. It was found that multicopper oxidase CueO from the E. coli expression host also possesses catalytic activity in the oxidation of 1,4-dihydropyridines. The whole-cell biocatalyst expressing Bacillus licheniformis laccase was subsequently immobilized on bacterial nanocellulose and utilized in the same transformation, retaining 37 % of its original activity after three consecutive catalytic runs. This is the first report of a whole-cell catalytic system containing recombinant laccase for the oxidation of 1,4-dihydropyridines., Lakaze predstavljalju raznoliku klasu enzima koja nalazi primenu od valorizacije otpada do organske sinteze. U ovom istraživanju ispitivane su cele ćelije koje sadrže bakterijsku lakazu kao katalizator u oksidaciji 1,4-dihidropiridina. Ekspresija cotA gena iz Bacillus licheniformis je izvršena u ćelijama E. coli i za nastali biokatalizator je ustanovljeno da ubrzava oksidaciju 1,4-dihidropiridina. Pored toga, ustanovljeno je da „multicopper“ oksidaza CueO iz E. coli takođe poseduje aktivnost prema oksidaciji 1,4-dihidropiridina. Ekspresioni sistem koji sadrži lakazu iz bakterije Bacillus licheniformis zatim je imobilizovan na bakterijskoj nanocelulozi i upotrebljen je kao katalizator u istoj transformaciji. Takav katalizator je bilo moguće ponovo upotrebiti tri puta, nakon čega je njegova aktivnost iznosila 37 % od početne. Navedeno istraživanje predstavlja prvu primenu celih ćelija sa rekombinantnom lakazom u oksidaciji 1,4-dihidropiridina.",
publisher = "Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd",
journal = "56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova, Niš 7-8.9. 2019.",
title = "Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli, Oksidacija 1,4-dihidropiridina katalizovana rekombinantnom bakterijskom lakazom eksprimiranom u E. coli",
pages = "88",
url = "https://hdl.handle.net/21.15107/rcub_cer_3302"
}
Simić, S., Božić, N., Đokić, L., Nikodinović-Runić, J.,& Opsenica, I.. (2019). Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli. in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova, Niš 7-8.9. 2019.
Serbian Chemical Society, Belgrade / Srpsko hemijsko društvo, Beograd., 88.
https://hdl.handle.net/21.15107/rcub_cer_3302
Simić S, Božić N, Đokić L, Nikodinović-Runić J, Opsenica I. Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli. in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova, Niš 7-8.9. 2019.. 2019;:88.
https://hdl.handle.net/21.15107/rcub_cer_3302 .
Simić, Stefan, Božić, Nataša, Đokić, Lidija, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Oxidation of 1,4-dihydropyridines catalyzed by recombinant bacterial laccase expressed in E. coli" in 56th Meeting of the Serbian chemical Society - Book of Abstracts / 56. Savetovanje Srpskog hemijskog društva - Kratki izvodi radova, Niš 7-8.9. 2019. (2019):88,
https://hdl.handle.net/21.15107/rcub_cer_3302 .

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija S.; Ćosović, Vladan; O'Connor, Kevin E.; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2955
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
VL  - 162
SP  - 160
EP  - 168
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija S. and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
volume = "162",
pages = "160-168",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M. S., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić MS, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija S., Ćosović, Vladan, O'Connor, Kevin E., Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
20
6
20

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija S.; Ćosović, Vladan; O'Connor, Kevin E.; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2956
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
VL  - 162
SP  - 160
EP  - 168
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija S. and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
volume = "162",
pages = "160-168",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M. S., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić MS, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija S., Ćosović, Vladan, O'Connor, Kevin E., Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
20
6
20

Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers

Ponjavić, Marijana; Nikolić, Marija S.; Jeremić, Sanja; Đokić, Lidija; Nikodinović-Runić, Jasmina; Ćosović, Vladan; Đonlagić, Jasna

(Springer, 2018)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Ćosović, Vladan
AU  - Đonlagić, Jasna
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2311
AB  - Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( LT  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.
PB  - Springer
T2  - Journal of Polymers and the Environment
T1  - Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers
VL  - 26
IS  - 6
SP  - 2346
EP  - 2359
DO  - 10.1007/s10924-017-1130-2
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Jeremić, Sanja and Đokić, Lidija and Nikodinović-Runić, Jasmina and Ćosović, Vladan and Đonlagić, Jasna",
year = "2018",
abstract = "Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M (n) 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of epsilon-caprolactone, were characterized by H-1 NMR, quantitative C-13 NMR, GPC, DSC and WAXS. The introduction of the PEO central segment ( LT  2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 A degrees C resulted in significant degradation of the all synthesized block copolymers.",
publisher = "Springer",
journal = "Journal of Polymers and the Environment",
title = "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers",
volume = "26",
number = "6",
pages = "2346-2359",
doi = "10.1007/s10924-017-1130-2"
}
Ponjavić, M., Nikolić, M. S., Jeremić, S., Đokić, L., Nikodinović-Runić, J., Ćosović, V.,& Đonlagić, J.. (2018). Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment
Springer., 26(6), 2346-2359.
https://doi.org/10.1007/s10924-017-1130-2
Ponjavić M, Nikolić MS, Jeremić S, Đokić L, Nikodinović-Runić J, Ćosović V, Đonlagić J. Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. in Journal of Polymers and the Environment. 2018;26(6):2346-2359.
doi:10.1007/s10924-017-1130-2 .
Ponjavić, Marijana, Nikolić, Marija S., Jeremić, Sanja, Đokić, Lidija, Nikodinović-Runić, Jasmina, Ćosović, Vladan, Đonlagić, Jasna, "Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers" in Journal of Polymers and the Environment, 26, no. 6 (2018):2346-2359,
https://doi.org/10.1007/s10924-017-1130-2 . .
9
4
8

Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments

Jeremić, Sanja; Beškoski, Vladimir; Đokić, Lidija; Vasiljevic, Branka; Vrvić, Miroslav; Avdalović, Jelena; Gojgić-Cvijović, Gordana; Slavković Beškoski, Latinka; Nikodinović-Runić, Jasmina

(Academic Press Ltd- Elsevier Science Ltd, London, 2016)

TY  - JOUR
AU  - Jeremić, Sanja
AU  - Beškoski, Vladimir
AU  - Đokić, Lidija
AU  - Vasiljevic, Branka
AU  - Vrvić, Miroslav
AU  - Avdalović, Jelena
AU  - Gojgić-Cvijović, Gordana
AU  - Slavković Beškoski, Latinka
AU  - Nikodinović-Runić, Jasmina
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2033
AB  - Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu2+, Cd2+ and Cr6+ and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria-Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Journal of Environmental Management
T1  - Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments
VL  - 172
SP  - 151
EP  - 161
DO  - 10.1016/j.jenvman.2016.02.041
ER  - 
@article{
author = "Jeremić, Sanja and Beškoski, Vladimir and Đokić, Lidija and Vasiljevic, Branka and Vrvić, Miroslav and Avdalović, Jelena and Gojgić-Cvijović, Gordana and Slavković Beškoski, Latinka and Nikodinović-Runić, Jasmina",
year = "2016",
abstract = "Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu2+, Cd2+ and Cr6+ and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria-Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Journal of Environmental Management",
title = "Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments",
volume = "172",
pages = "151-161",
doi = "10.1016/j.jenvman.2016.02.041"
}
Jeremić, S., Beškoski, V., Đokić, L., Vasiljevic, B., Vrvić, M., Avdalović, J., Gojgić-Cvijović, G., Slavković Beškoski, L.,& Nikodinović-Runić, J.. (2016). Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. in Journal of Environmental Management
Academic Press Ltd- Elsevier Science Ltd, London., 172, 151-161.
https://doi.org/10.1016/j.jenvman.2016.02.041
Jeremić S, Beškoski V, Đokić L, Vasiljevic B, Vrvić M, Avdalović J, Gojgić-Cvijović G, Slavković Beškoski L, Nikodinović-Runić J. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. in Journal of Environmental Management. 2016;172:151-161.
doi:10.1016/j.jenvman.2016.02.041 .
Jeremić, Sanja, Beškoski, Vladimir, Đokić, Lidija, Vasiljevic, Branka, Vrvić, Miroslav, Avdalović, Jelena, Gojgić-Cvijović, Gordana, Slavković Beškoski, Latinka, Nikodinović-Runić, Jasmina, "Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments" in Journal of Environmental Management, 172 (2016):151-161,
https://doi.org/10.1016/j.jenvman.2016.02.041 . .
1
14
8
14

Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study

Gojgić-Cvijović, Gordana; Milić, Jelena; Šolević Knudsen, Tatjana; Beškoski, Vladimir; Ilić, Mila; Đokić, Lidija; Narancic, T. M.; Vrvić, Miroslav

(Springer, New York, 2012)

TY  - JOUR
AU  - Gojgić-Cvijović, Gordana
AU  - Milić, Jelena
AU  - Šolević Knudsen, Tatjana
AU  - Beškoski, Vladimir
AU  - Ilić, Mila
AU  - Đokić, Lidija
AU  - Narancic, T. M.
AU  - Vrvić, Miroslav
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/999
AB  - This article presents a study of the efficiency and degradation pattern of samples of petroleum sludge and polluted sandy soil from an oil refinery. A bacterial consortium, consisting of strains from the genera Pseudomonas, Achromobacter, Bacillus and Micromonospora, was isolated from a petroleum sludge sample and characterized. The addition of nitrogen and phosphorus nutrients and a chemical surfactant to both the samples and bioaugmentation to the soil sample were applied under laboratory conditions. The extent of biodegradation was monitored by the gravimetric method and analysis of the residual oil by gas chromatography. Over a 12-week experiment, the achieved degree of TPH (total petroleum hydrocarbon) degradation amounted to 82-88% in the petroleum sludge and 86-91% in the polluted soil. Gas chromatography-mass spectrometry was utilized to determine the biodegradability and degradation rates of n-alkanes, isoprenoids, steranes, diasteranes and terpanes. Complete degradation of the n-alkanes and isoprenoids fractions occurred in both the samples. In addition, the intensities of the peaks corresponding to tricyclic terpenes and homohopanes were decreased, while significant changes were also observed in the distribution of diasteranes and steranes.
PB  - Springer, New York
T2  - Biodegradation
T1  - Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study
VL  - 23
IS  - 1
SP  - 1
EP  - 14
DO  - 10.1007/s10532-011-9481-1
ER  - 
@article{
author = "Gojgić-Cvijović, Gordana and Milić, Jelena and Šolević Knudsen, Tatjana and Beškoski, Vladimir and Ilić, Mila and Đokić, Lidija and Narancic, T. M. and Vrvić, Miroslav",
year = "2012",
abstract = "This article presents a study of the efficiency and degradation pattern of samples of petroleum sludge and polluted sandy soil from an oil refinery. A bacterial consortium, consisting of strains from the genera Pseudomonas, Achromobacter, Bacillus and Micromonospora, was isolated from a petroleum sludge sample and characterized. The addition of nitrogen and phosphorus nutrients and a chemical surfactant to both the samples and bioaugmentation to the soil sample were applied under laboratory conditions. The extent of biodegradation was monitored by the gravimetric method and analysis of the residual oil by gas chromatography. Over a 12-week experiment, the achieved degree of TPH (total petroleum hydrocarbon) degradation amounted to 82-88% in the petroleum sludge and 86-91% in the polluted soil. Gas chromatography-mass spectrometry was utilized to determine the biodegradability and degradation rates of n-alkanes, isoprenoids, steranes, diasteranes and terpanes. Complete degradation of the n-alkanes and isoprenoids fractions occurred in both the samples. In addition, the intensities of the peaks corresponding to tricyclic terpenes and homohopanes were decreased, while significant changes were also observed in the distribution of diasteranes and steranes.",
publisher = "Springer, New York",
journal = "Biodegradation",
title = "Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study",
volume = "23",
number = "1",
pages = "1-14",
doi = "10.1007/s10532-011-9481-1"
}
Gojgić-Cvijović, G., Milić, J., Šolević Knudsen, T., Beškoski, V., Ilić, M., Đokić, L., Narancic, T. M.,& Vrvić, M.. (2012). Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. in Biodegradation
Springer, New York., 23(1), 1-14.
https://doi.org/10.1007/s10532-011-9481-1
Gojgić-Cvijović G, Milić J, Šolević Knudsen T, Beškoski V, Ilić M, Đokić L, Narancic TM, Vrvić M. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. in Biodegradation. 2012;23(1):1-14.
doi:10.1007/s10532-011-9481-1 .
Gojgić-Cvijović, Gordana, Milić, Jelena, Šolević Knudsen, Tatjana, Beškoski, Vladimir, Ilić, Mila, Đokić, Lidija, Narancic, T. M., Vrvić, Miroslav, "Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study" in Biodegradation, 23, no. 1 (2012):1-14,
https://doi.org/10.1007/s10532-011-9481-1 . .
3
84
68
89