Gorgievski, Milan

Link to this page

Authority KeyName Variants
orcid::0000-0002-9899-719X
  • Gorgievski, Milan (7)
Projects

Author's Bibliography

Study of thermal properties and microstructure of the Ag–Ge alloys

Manasijević, Dragan; Balanović, Ljubiša; Marković, Ivana; Gorgievski, Milan; Stamenković, Uroš; Minić, Duško; Premović, Milena; Đorđević, Aleksandar; Ćosović, Vladan

(Springer, 2022)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Marković, Ivana
AU  - Gorgievski, Milan
AU  - Stamenković, Uroš
AU  - Minić, Duško
AU  - Premović, Milena
AU  - Đorđević, Aleksandar
AU  - Ćosović, Vladan
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4808
AB  - Microstructure, phase transitions and thermal properties including thermal diffusivity and thermal conductivity of four Ag–Ge alloys with 20, 40, 60 and 80 at % of Ge were experimentally investigated in this study. Observation and analysis of the alloy microstructures and morphologies of (Ge) phase in the hypereutectic alloys were carried out using optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDS). Phase transitions of the alloys were studied using differential scanning calorimetry (DSC). Experimentally determined temperature of the eutectic reaction was 650.9 °C. The xenon flash method was used for thermal diffusivity measurements in the temperature range from 25 to 400 °C. Based on the measured values of thermal diffusivity, thermal conductivity of the solid Ag–Ge alloys was determined. It was found that both thermal diffusivity and thermal conductivity show a minimum at 20 at % Ge which is close to the eutectic composition. The obtained results were compared with the results of thermodynamic calculation and literature data, and a close agreement was observed.
PB  - Springer
T2  - Journal of Thermal Analysis and Calorimetry
T1  - Study of thermal properties and microstructure of the Ag–Ge alloys
VL  - 147
SP  - 1955
EP  - 1964
DO  - 10.1007/s10973-021-10664-y
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Marković, Ivana and Gorgievski, Milan and Stamenković, Uroš and Minić, Duško and Premović, Milena and Đorđević, Aleksandar and Ćosović, Vladan",
year = "2022",
abstract = "Microstructure, phase transitions and thermal properties including thermal diffusivity and thermal conductivity of four Ag–Ge alloys with 20, 40, 60 and 80 at % of Ge were experimentally investigated in this study. Observation and analysis of the alloy microstructures and morphologies of (Ge) phase in the hypereutectic alloys were carried out using optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDS). Phase transitions of the alloys were studied using differential scanning calorimetry (DSC). Experimentally determined temperature of the eutectic reaction was 650.9 °C. The xenon flash method was used for thermal diffusivity measurements in the temperature range from 25 to 400 °C. Based on the measured values of thermal diffusivity, thermal conductivity of the solid Ag–Ge alloys was determined. It was found that both thermal diffusivity and thermal conductivity show a minimum at 20 at % Ge which is close to the eutectic composition. The obtained results were compared with the results of thermodynamic calculation and literature data, and a close agreement was observed.",
publisher = "Springer",
journal = "Journal of Thermal Analysis and Calorimetry",
title = "Study of thermal properties and microstructure of the Ag–Ge alloys",
volume = "147",
pages = "1955-1964",
doi = "10.1007/s10973-021-10664-y"
}
Manasijević, D., Balanović, L., Marković, I., Gorgievski, M., Stamenković, U., Minić, D., Premović, M., Đorđević, A.,& Ćosović, V.. (2022). Study of thermal properties and microstructure of the Ag–Ge alloys. in Journal of Thermal Analysis and Calorimetry
Springer., 147, 1955-1964.
https://doi.org/10.1007/s10973-021-10664-y
Manasijević D, Balanović L, Marković I, Gorgievski M, Stamenković U, Minić D, Premović M, Đorđević A, Ćosović V. Study of thermal properties and microstructure of the Ag–Ge alloys. in Journal of Thermal Analysis and Calorimetry. 2022;147:1955-1964.
doi:10.1007/s10973-021-10664-y .
Manasijević, Dragan, Balanović, Ljubiša, Marković, Ivana, Gorgievski, Milan, Stamenković, Uroš, Minić, Duško, Premović, Milena, Đorđević, Aleksandar, Ćosović, Vladan, "Study of thermal properties and microstructure of the Ag–Ge alloys" in Journal of Thermal Analysis and Calorimetry, 147 (2022):1955-1964,
https://doi.org/10.1007/s10973-021-10664-y . .
3
3

Thermal transport properties and microstructure of the solid Bi-Cu alloys

Manasijević, Dragan; Balanović, Ljubiša; Marković, Ivana; Ćosović, Vladan; Gorgievski, Milan; Stamenković, Uroš; Božinović, Kristina

(Belgrade : Association of Metallurgical Engineers of Serbia ( AMES ), 2022)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Marković, Ivana
AU  - Ćosović, Vladan
AU  - Gorgievski, Milan
AU  - Stamenković, Uroš
AU  - Božinović, Kristina
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5368
AB  - Thermal transport properties of solid Bi-Cu alloys have been investigated over a wide composition range and temperature range ranging from 25 to 250 °C. The flash method was used to determine thermal diffusivity. Thermal diffusivity was discovered to decrease continuously with increasing temperature and bismuth content. The indirect Archimedean method was used to determine the density of the Bi-Cu alloys at 25 °C. The obtained results show that the density of the studied alloys decreases slightly as the copper content increases. Thermal conductivity of the alloys was calculated using measured diffusivity, density, and a calculated specific heat capacity. The thermal conductivity of the studied Bi-Cu alloys decreases with increasing temperature and bismuth content, similar to thermal diffusivity. SEM with energy dispersive X-ray spectrometry (EDS) and differential scanning calorimetry (DSC) were used to examine the microstructure and melting behavior of Bi-Cu alloys, respectively. The eutectic temperature was measured to be 269.9±0.1 °C, and the measured phase transition temperatures and heat effects were compared to thermodynamic calculations using the CALPHAD method.
PB  - Belgrade : Association of Metallurgical Engineers of Serbia  ( AMES )
T2  - Metallurgical and Materials Engineering
T1  - Thermal transport properties and microstructure of the solid Bi-Cu alloys
VL  - 28
IS  - 3
SP  - 503
EP  - 514
DO  - 10.30544/841
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Marković, Ivana and Ćosović, Vladan and Gorgievski, Milan and Stamenković, Uroš and Božinović, Kristina",
year = "2022",
abstract = "Thermal transport properties of solid Bi-Cu alloys have been investigated over a wide composition range and temperature range ranging from 25 to 250 °C. The flash method was used to determine thermal diffusivity. Thermal diffusivity was discovered to decrease continuously with increasing temperature and bismuth content. The indirect Archimedean method was used to determine the density of the Bi-Cu alloys at 25 °C. The obtained results show that the density of the studied alloys decreases slightly as the copper content increases. Thermal conductivity of the alloys was calculated using measured diffusivity, density, and a calculated specific heat capacity. The thermal conductivity of the studied Bi-Cu alloys decreases with increasing temperature and bismuth content, similar to thermal diffusivity. SEM with energy dispersive X-ray spectrometry (EDS) and differential scanning calorimetry (DSC) were used to examine the microstructure and melting behavior of Bi-Cu alloys, respectively. The eutectic temperature was measured to be 269.9±0.1 °C, and the measured phase transition temperatures and heat effects were compared to thermodynamic calculations using the CALPHAD method.",
publisher = "Belgrade : Association of Metallurgical Engineers of Serbia  ( AMES )",
journal = "Metallurgical and Materials Engineering",
title = "Thermal transport properties and microstructure of the solid Bi-Cu alloys",
volume = "28",
number = "3",
pages = "503-514",
doi = "10.30544/841"
}
Manasijević, D., Balanović, L., Marković, I., Ćosović, V., Gorgievski, M., Stamenković, U.,& Božinović, K.. (2022). Thermal transport properties and microstructure of the solid Bi-Cu alloys. in Metallurgical and Materials Engineering
Belgrade : Association of Metallurgical Engineers of Serbia  ( AMES )., 28(3), 503-514.
https://doi.org/10.30544/841
Manasijević D, Balanović L, Marković I, Ćosović V, Gorgievski M, Stamenković U, Božinović K. Thermal transport properties and microstructure of the solid Bi-Cu alloys. in Metallurgical and Materials Engineering. 2022;28(3):503-514.
doi:10.30544/841 .
Manasijević, Dragan, Balanović, Ljubiša, Marković, Ivana, Ćosović, Vladan, Gorgievski, Milan, Stamenković, Uroš, Božinović, Kristina, "Thermal transport properties and microstructure of the solid Bi-Cu alloys" in Metallurgical and Materials Engineering, 28, no. 3 (2022):503-514,
https://doi.org/10.30544/841 . .
1

Structural and thermal properties of Sn–Ag alloys

Manasijević, Dragan; Balanović, Ljubiša; Marković, Ljubiša; Gorgievski, Milan; Stamenković, Uroš; Đorđević, Aleksandar; Minić, Duško; Ćosović, Vladan

(Elsevier, 2021)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Marković, Ljubiša
AU  - Gorgievski, Milan
AU  - Stamenković, Uroš
AU  - Đorđević, Aleksandar
AU  - Minić, Duško
AU  - Ćosović, Vladan
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4817
AB  - Microstructure and thermal properties of slowly cooled Sn–10% Ag and Sn–20% Ag alloys were experimentally investigated in this study. It was found that microstructure of the studied alloys is composed of large, plate-like grains of Ag3Sn intermetallic phase in the Sn-rich eutectic matrix. Phase transition temperatures and corresponding heat effects were experimentally determined and compared with the results of thermodynamic and phase equilibria calculations using the CALPHAD (CALculation of PHAse Diagrams) method and optimized thermodynamic parameters from literature. The xenon flash method was employed for the measurements of thermal diffusivity and determination of thermal conductivity in the temperature range from 25 to 150 °C. The results show that the thermal diffusivity and thermal conductivity gradually decrease with increasing temperature. The determined values of thermal conductivities of the investigated alloys are very close to each other and only slightly higher than that of pure tin. The contributions of electrons and phonons to the thermal conductivity of the studied alloys at room temperature were determined using the Wiedemann-Franz law and the obtained values of the thermal and electrical conductivities. The percentage contributions of the phonon component to the thermal conductivity for Sn–10% Ag and Sn–20% Ag alloys at 25 °C were found to be 20.5% and 28.9%, respectively.
PB  - Elsevier
T2  - Solid State Sciences
T1  - Structural and thermal properties of Sn–Ag alloys
VL  - 119
SP  - 106685
DO  - 10.1016/j.solidstatesciences.2021.106685
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Marković, Ljubiša and Gorgievski, Milan and Stamenković, Uroš and Đorđević, Aleksandar and Minić, Duško and Ćosović, Vladan",
year = "2021",
abstract = "Microstructure and thermal properties of slowly cooled Sn–10% Ag and Sn–20% Ag alloys were experimentally investigated in this study. It was found that microstructure of the studied alloys is composed of large, plate-like grains of Ag3Sn intermetallic phase in the Sn-rich eutectic matrix. Phase transition temperatures and corresponding heat effects were experimentally determined and compared with the results of thermodynamic and phase equilibria calculations using the CALPHAD (CALculation of PHAse Diagrams) method and optimized thermodynamic parameters from literature. The xenon flash method was employed for the measurements of thermal diffusivity and determination of thermal conductivity in the temperature range from 25 to 150 °C. The results show that the thermal diffusivity and thermal conductivity gradually decrease with increasing temperature. The determined values of thermal conductivities of the investigated alloys are very close to each other and only slightly higher than that of pure tin. The contributions of electrons and phonons to the thermal conductivity of the studied alloys at room temperature were determined using the Wiedemann-Franz law and the obtained values of the thermal and electrical conductivities. The percentage contributions of the phonon component to the thermal conductivity for Sn–10% Ag and Sn–20% Ag alloys at 25 °C were found to be 20.5% and 28.9%, respectively.",
publisher = "Elsevier",
journal = "Solid State Sciences",
title = "Structural and thermal properties of Sn–Ag alloys",
volume = "119",
pages = "106685",
doi = "10.1016/j.solidstatesciences.2021.106685"
}
Manasijević, D., Balanović, L., Marković, L., Gorgievski, M., Stamenković, U., Đorđević, A., Minić, D.,& Ćosović, V.. (2021). Structural and thermal properties of Sn–Ag alloys. in Solid State Sciences
Elsevier., 119, 106685.
https://doi.org/10.1016/j.solidstatesciences.2021.106685
Manasijević D, Balanović L, Marković L, Gorgievski M, Stamenković U, Đorđević A, Minić D, Ćosović V. Structural and thermal properties of Sn–Ag alloys. in Solid State Sciences. 2021;119:106685.
doi:10.1016/j.solidstatesciences.2021.106685 .
Manasijević, Dragan, Balanović, Ljubiša, Marković, Ljubiša, Gorgievski, Milan, Stamenković, Uroš, Đorđević, Aleksandar, Minić, Duško, Ćosović, Vladan, "Structural and thermal properties of Sn–Ag alloys" in Solid State Sciences, 119 (2021):106685,
https://doi.org/10.1016/j.solidstatesciences.2021.106685 . .
8
9

Thermal characterization of the In–Sn–Zn eutectic alloy

Manasijević, Dragan; Balanović, Ljubiša; Ćosović, Vladan; Minić, Duško; Premović, Milena; Gorgievski, Milan; Stamenković, Uroš; Talijan, Nadežda M.

(Belgrade : Association of Metallurgical Engineers of Serbia, 2020)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Ćosović, Vladan
AU  - Minić, Duško
AU  - Premović, Milena
AU  - Gorgievski, Milan
AU  - Stamenković, Uroš
AU  - Talijan, Nadežda M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3391
AB  - Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In–Sn–Zn eutectic alloy were investigated in this work. The In–Sn–Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In–Sn–Zn eutectic alloy are 106.5±0.1 °C and 28.3±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In–Sn–Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.
PB  - Belgrade : Association of Metallurgical Engineers of Serbia
T2  - Metallurgical and Materials Engineering
T1  - Thermal characterization of the In–Sn–Zn eutectic alloy
VL  - 25
IS  - 04
SP  - 325
EP  - 334
DO  - 10.30544/456
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Ćosović, Vladan and Minić, Duško and Premović, Milena and Gorgievski, Milan and Stamenković, Uroš and Talijan, Nadežda M.",
year = "2020",
abstract = "Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In–Sn–Zn eutectic alloy were investigated in this work. The In–Sn–Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In–Sn–Zn eutectic alloy are 106.5±0.1 °C and 28.3±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In–Sn–Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.",
publisher = "Belgrade : Association of Metallurgical Engineers of Serbia",
journal = "Metallurgical and Materials Engineering",
title = "Thermal characterization of the In–Sn–Zn eutectic alloy",
volume = "25",
number = "04",
pages = "325-334",
doi = "10.30544/456"
}
Manasijević, D., Balanović, L., Ćosović, V., Minić, D., Premović, M., Gorgievski, M., Stamenković, U.,& Talijan, N. M.. (2020). Thermal characterization of the In–Sn–Zn eutectic alloy. in Metallurgical and Materials Engineering
Belgrade : Association of Metallurgical Engineers of Serbia., 25(04), 325-334.
https://doi.org/10.30544/456
Manasijević D, Balanović L, Ćosović V, Minić D, Premović M, Gorgievski M, Stamenković U, Talijan NM. Thermal characterization of the In–Sn–Zn eutectic alloy. in Metallurgical and Materials Engineering. 2020;25(04):325-334.
doi:10.30544/456 .
Manasijević, Dragan, Balanović, Ljubiša, Ćosović, Vladan, Minić, Duško, Premović, Milena, Gorgievski, Milan, Stamenković, Uroš, Talijan, Nadežda M., "Thermal characterization of the In–Sn–Zn eutectic alloy" in Metallurgical and Materials Engineering, 25, no. 04 (2020):325-334,
https://doi.org/10.30544/456 . .
1
3
4

Microstructure and thermal properties of Bi-Sn eutectic alloy

Manasijević, Ivana; Balanović, Ljubiša; Stamenković, Uroš; Gorgievski, Milan; Ćosović, Vladan

(München : Carl Hanser Verlag, 2020)

TY  - JOUR
AU  - Manasijević, Ivana
AU  - Balanović, Ljubiša
AU  - Stamenković, Uroš
AU  - Gorgievski, Milan
AU  - Ćosović, Vladan
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3775
AB  - Alloys based on Sn and Bi are considered to be one of the best soft lead-free solders due to their low melting temperature and low price. In addition, Bi-Sn alloy with a eutectic composition represents a promising candidate as a metallic phase change material (PCM) for use in the field of  thermal energy storage (TES). The accurate knowledge of microstructural and thermophysical properties such as the latent heat of melting, thermal conductivity, specific heat capacity is of crucial importance for PCM selection. Thus, the aim of the current study has been to determine the  microstructure, latent heat of melting and thermal conductivity of a eutectic alloy from the binary Bi-Sn system.
PB  - München : Carl Hanser Verlag
T2  - Materials Testing
T1  - Microstructure and thermal properties of Bi-Sn eutectic alloy
VL  - 62
IS  - 2
SP  - 184
EP  - 188
DO  - 10.3139/120.111470
ER  - 
@article{
author = "Manasijević, Ivana and Balanović, Ljubiša and Stamenković, Uroš and Gorgievski, Milan and Ćosović, Vladan",
year = "2020",
abstract = "Alloys based on Sn and Bi are considered to be one of the best soft lead-free solders due to their low melting temperature and low price. In addition, Bi-Sn alloy with a eutectic composition represents a promising candidate as a metallic phase change material (PCM) for use in the field of  thermal energy storage (TES). The accurate knowledge of microstructural and thermophysical properties such as the latent heat of melting, thermal conductivity, specific heat capacity is of crucial importance for PCM selection. Thus, the aim of the current study has been to determine the  microstructure, latent heat of melting and thermal conductivity of a eutectic alloy from the binary Bi-Sn system.",
publisher = "München : Carl Hanser Verlag",
journal = "Materials Testing",
title = "Microstructure and thermal properties of Bi-Sn eutectic alloy",
volume = "62",
number = "2",
pages = "184-188",
doi = "10.3139/120.111470"
}
Manasijević, I., Balanović, L., Stamenković, U., Gorgievski, M.,& Ćosović, V.. (2020). Microstructure and thermal properties of Bi-Sn eutectic alloy. in Materials Testing
München : Carl Hanser Verlag., 62(2), 184-188.
https://doi.org/10.3139/120.111470
Manasijević I, Balanović L, Stamenković U, Gorgievski M, Ćosović V. Microstructure and thermal properties of Bi-Sn eutectic alloy. in Materials Testing. 2020;62(2):184-188.
doi:10.3139/120.111470 .
Manasijević, Ivana, Balanović, Ljubiša, Stamenković, Uroš, Gorgievski, Milan, Ćosović, Vladan, "Microstructure and thermal properties of Bi-Sn eutectic alloy" in Materials Testing, 62, no. 2 (2020):184-188,
https://doi.org/10.3139/120.111470 . .
1
1

Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy

Manasijević, Dragan; Balanović, Ljubiša; Holjevac Grgurić, Tamara; Gorgievski, Milan; Marković, Ivana; Ćosović, Vladan; Premović, Milena; Minić, Duško

(Association of Metallurgical Engineers of Serbia (AMES), 2020)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Holjevac Grgurić, Tamara
AU  - Gorgievski, Milan
AU  - Marković, Ivana
AU  - Ćosović, Vladan
AU  - Premović, Milena
AU  - Minić, Duško
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3781
AB  - Low-melting alloys, based on bismuth and indium, have found commercial use in soldering, safety devices, coatings, and bonding applications. In this respect, the accurate knowledge  of  their  thermal  properties  such  as  melting  and  solidification  temperatures, latent heat of melting, supercooling tendency, etc. is of large importance. In the present research,   low-melting   alloy   with   nominal   composition   Bi40In40Pb20(at.   %)   was investigated by means of scanning electron microscopy(SEM) with energy dispersive X-ray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in the  prepared  alloy,  which  was  identified  as  BiInand  (Pb).  Melting  and  solidification temperatures  and  the  related  heat  effects  were  measured  by  the  DSC  technique.  The solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus temperature  obtained  from  the  corresponding  DSC  cooling  runs  was  61.2  °C.  The experimentally  obtained  results  were  compared  with  the  results  of  thermodynamic calculation according to CALPHAD (calculation of phase diagram) approach, and a close agreement was noticed.
PB  - Association of Metallurgical Engineers of Serbia (AMES)
T2  - Metallurgical and Materials Engineering
T1  - Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy
VL  - 26
IS  - 4
SP  - 385
EP  - 394
DO  - 10.30544/564
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Holjevac Grgurić, Tamara and Gorgievski, Milan and Marković, Ivana and Ćosović, Vladan and Premović, Milena and Minić, Duško",
year = "2020",
abstract = "Low-melting alloys, based on bismuth and indium, have found commercial use in soldering, safety devices, coatings, and bonding applications. In this respect, the accurate knowledge  of  their  thermal  properties  such  as  melting  and  solidification  temperatures, latent heat of melting, supercooling tendency, etc. is of large importance. In the present research,   low-melting   alloy   with   nominal   composition   Bi40In40Pb20(at.   %)   was investigated by means of scanning electron microscopy(SEM) with energy dispersive X-ray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in the  prepared  alloy,  which  was  identified  as  BiInand  (Pb).  Melting  and  solidification temperatures  and  the  related  heat  effects  were  measured  by  the  DSC  technique.  The solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus temperature  obtained  from  the  corresponding  DSC  cooling  runs  was  61.2  °C.  The experimentally  obtained  results  were  compared  with  the  results  of  thermodynamic calculation according to CALPHAD (calculation of phase diagram) approach, and a close agreement was noticed.",
publisher = "Association of Metallurgical Engineers of Serbia (AMES)",
journal = "Metallurgical and Materials Engineering",
title = "Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy",
volume = "26",
number = "4",
pages = "385-394",
doi = "10.30544/564"
}
Manasijević, D., Balanović, L., Holjevac Grgurić, T., Gorgievski, M., Marković, I., Ćosović, V., Premović, M.,& Minić, D.. (2020). Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy. in Metallurgical and Materials Engineering
Association of Metallurgical Engineers of Serbia (AMES)., 26(4), 385-394.
https://doi.org/10.30544/564
Manasijević D, Balanović L, Holjevac Grgurić T, Gorgievski M, Marković I, Ćosović V, Premović M, Minić D. Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy. in Metallurgical and Materials Engineering. 2020;26(4):385-394.
doi:10.30544/564 .
Manasijević, Dragan, Balanović, Ljubiša, Holjevac Grgurić, Tamara, Gorgievski, Milan, Marković, Ivana, Ćosović, Vladan, Premović, Milena, Minić, Duško, "Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy" in Metallurgical and Materials Engineering, 26, no. 4 (2020):385-394,
https://doi.org/10.30544/564 . .

Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy

Manasijević, Dragan; Balanović, Ljubiša; Holjevac Grgurić, Tamara; Gorgievski, Milan; Marković, Ivana; Ćosović, Vladan; Premović, Milena; Minić, Duško

(Serbia : Association of Metallurgical Engineers of Serbia, 2020)

TY  - JOUR
AU  - Manasijević, Dragan
AU  - Balanović, Ljubiša
AU  - Holjevac Grgurić, Tamara
AU  - Gorgievski, Milan
AU  - Marković, Ivana
AU  - Ćosović, Vladan
AU  - Premović, Milena
AU  - Minić, Duško
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4222
AB  - Low-melting alloys, based on bismuth and indium, have found commercial use in soldering, safety devices, coatings, and bonding applications. In this respect, the accurate knowledge of their thermal properties such as melting and solidification temperatures, latent heat of melting, supercooling tendency, etc. is of large importance. In the present research, low-melting alloy with nominal composition Bi40In40Pb20 (at. %) was investigated by means of scanning electron microscopy (SEM) with energy dispersive Xray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in the prepared alloy, which was identified as BiIn and (Pb). Melting and solidification temperatures and the related heat effects were measured by the DSC technique. The solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus temperature obtained from the corresponding DSC cooling runs was 61.2 °C. The experimentally obtained results were compared with the results of thermodynamic calculation according to CALPHAD (calculation of phase diagram) approach, and a close agreement was noticed.
PB  - Serbia : Association of Metallurgical Engineers of Serbia
T2  - Metallurgical & Materials Engineering
T1  - Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy
VL  - 26
IS  - 4
SP  - 385
EP  - 394
DO  - 10.30544/564
ER  - 
@article{
author = "Manasijević, Dragan and Balanović, Ljubiša and Holjevac Grgurić, Tamara and Gorgievski, Milan and Marković, Ivana and Ćosović, Vladan and Premović, Milena and Minić, Duško",
year = "2020",
abstract = "Low-melting alloys, based on bismuth and indium, have found commercial use in soldering, safety devices, coatings, and bonding applications. In this respect, the accurate knowledge of their thermal properties such as melting and solidification temperatures, latent heat of melting, supercooling tendency, etc. is of large importance. In the present research, low-melting alloy with nominal composition Bi40In40Pb20 (at. %) was investigated by means of scanning electron microscopy (SEM) with energy dispersive Xray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in the prepared alloy, which was identified as BiIn and (Pb). Melting and solidification temperatures and the related heat effects were measured by the DSC technique. The solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus temperature obtained from the corresponding DSC cooling runs was 61.2 °C. The experimentally obtained results were compared with the results of thermodynamic calculation according to CALPHAD (calculation of phase diagram) approach, and a close agreement was noticed.",
publisher = "Serbia : Association of Metallurgical Engineers of Serbia",
journal = "Metallurgical & Materials Engineering",
title = "Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy",
volume = "26",
number = "4",
pages = "385-394",
doi = "10.30544/564"
}
Manasijević, D., Balanović, L., Holjevac Grgurić, T., Gorgievski, M., Marković, I., Ćosović, V., Premović, M.,& Minić, D.. (2020). Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy. in Metallurgical & Materials Engineering
Serbia : Association of Metallurgical Engineers of Serbia., 26(4), 385-394.
https://doi.org/10.30544/564
Manasijević D, Balanović L, Holjevac Grgurić T, Gorgievski M, Marković I, Ćosović V, Premović M, Minić D. Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy. in Metallurgical & Materials Engineering. 2020;26(4):385-394.
doi:10.30544/564 .
Manasijević, Dragan, Balanović, Ljubiša, Holjevac Grgurić, Tamara, Gorgievski, Milan, Marković, Ivana, Ćosović, Vladan, Premović, Milena, Minić, Duško, "Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy" in Metallurgical & Materials Engineering, 26, no. 4 (2020):385-394,
https://doi.org/10.30544/564 . .