Grozdanović, Milica

Link to this page

Authority KeyName Variants
6083ae95-6151-4057-808b-ce805413d34a
  • Grozdanović, Milica (5)
Projects

Author's Bibliography

Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions

Grozdanović, Milica; Čavić, Milena; Nešić, Andrijana; Anđelković, Uroš; Akbari, Peyman; Smit, Joost J.; Gavrović-Jankulović, Marija

(Elsevier, 2016)

TY  - JOUR
AU  - Grozdanović, Milica
AU  - Čavić, Milena
AU  - Nešić, Andrijana
AU  - Anđelković, Uroš
AU  - Akbari, Peyman
AU  - Smit, Joost J.
AU  - Gavrović-Jankulović, Marija
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3154
AB  - Background: The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease - actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). Methods: Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. Results: Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (233 mu g/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 mu g/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. Conclusion: Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. General significance: In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Biochimica et Biophysica Acta: General Subjects
T1  - Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions
VL  - 1860
IS  - 3
SP  - 516
EP  - 526
DO  - 10.1016/j.bbagen.2015.12.005
ER  - 
@article{
author = "Grozdanović, Milica and Čavić, Milena and Nešić, Andrijana and Anđelković, Uroš and Akbari, Peyman and Smit, Joost J. and Gavrović-Jankulović, Marija",
year = "2016",
abstract = "Background: The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease - actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). Methods: Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. Results: Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (233 mu g/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 mu g/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. Conclusion: Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. General significance: In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Biochimica et Biophysica Acta: General Subjects",
title = "Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions",
volume = "1860",
number = "3",
pages = "516-526",
doi = "10.1016/j.bbagen.2015.12.005"
}
Grozdanović, M., Čavić, M., Nešić, A., Anđelković, U., Akbari, P., Smit, J. J.,& Gavrović-Jankulović, M.. (2016). Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. in Biochimica et Biophysica Acta: General Subjects
Elsevier., 1860(3), 516-526.
https://doi.org/10.1016/j.bbagen.2015.12.005
Grozdanović M, Čavić M, Nešić A, Anđelković U, Akbari P, Smit JJ, Gavrović-Jankulović M. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. in Biochimica et Biophysica Acta: General Subjects. 2016;1860(3):516-526.
doi:10.1016/j.bbagen.2015.12.005 .
Grozdanović, Milica, Čavić, Milena, Nešić, Andrijana, Anđelković, Uroš, Akbari, Peyman, Smit, Joost J., Gavrović-Jankulović, Marija, "Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions" in Biochimica et Biophysica Acta: General Subjects, 1860, no. 3 (2016):516-526,
https://doi.org/10.1016/j.bbagen.2015.12.005 . .
5
45
24
41

Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions

Grozdanović, Milica; Čavić, Milena; Nešić, Andrijana; Anđelković, Uroš; Akbari, Peyman; Smit, Joost J.; Gavrović-Jankulović, Marija

(Elsevier, 2016)

TY  - JOUR
AU  - Grozdanović, Milica
AU  - Čavić, Milena
AU  - Nešić, Andrijana
AU  - Anđelković, Uroš
AU  - Akbari, Peyman
AU  - Smit, Joost J.
AU  - Gavrović-Jankulović, Marija
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3155
AB  - Background: The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease - actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). Methods: Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. Results: Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (233 mu g/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 mu g/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. Conclusion: Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. General significance: In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Biochimica et Biophysica Acta: General Subjects
T1  - Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions
VL  - 1860
IS  - 3
SP  - 516
EP  - 526
DO  - 10.1016/j.bbagen.2015.12.005
ER  - 
@article{
author = "Grozdanović, Milica and Čavić, Milena and Nešić, Andrijana and Anđelković, Uroš and Akbari, Peyman and Smit, Joost J. and Gavrović-Jankulović, Marija",
year = "2016",
abstract = "Background: The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease - actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). Methods: Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. Results: Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (233 mu g/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 mu g/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. Conclusion: Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. General significance: In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Biochimica et Biophysica Acta: General Subjects",
title = "Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions",
volume = "1860",
number = "3",
pages = "516-526",
doi = "10.1016/j.bbagen.2015.12.005"
}
Grozdanović, M., Čavić, M., Nešić, A., Anđelković, U., Akbari, P., Smit, J. J.,& Gavrović-Jankulović, M.. (2016). Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. in Biochimica et Biophysica Acta: General Subjects
Elsevier., 1860(3), 516-526.
https://doi.org/10.1016/j.bbagen.2015.12.005
Grozdanović M, Čavić M, Nešić A, Anđelković U, Akbari P, Smit JJ, Gavrović-Jankulović M. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. in Biochimica et Biophysica Acta: General Subjects. 2016;1860(3):516-526.
doi:10.1016/j.bbagen.2015.12.005 .
Grozdanović, Milica, Čavić, Milena, Nešić, Andrijana, Anđelković, Uroš, Akbari, Peyman, Smit, Joost J., Gavrović-Jankulović, Marija, "Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions" in Biochimica et Biophysica Acta: General Subjects, 1860, no. 3 (2016):516-526,
https://doi.org/10.1016/j.bbagen.2015.12.005 . .
5
45
24
41

Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart

Grozdanović, Milica; Ostojić, Sanja; Aleksić, Ivana; Anđelković, Uroš; Petersen, Arnd; Gavrović-Jankulović, Marija

(Wiley-Blackwell, Hoboken, 2014)

TY  - JOUR
AU  - Grozdanović, Milica
AU  - Ostojić, Sanja
AU  - Aleksić, Ivana
AU  - Anđelković, Uroš
AU  - Petersen, Arnd
AU  - Gavrović-Jankulović, Marija
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1397
AB  - BACKGROUND: Actinidin is a cysteine protease and major allergen from kiwi fruit. When purified under specific native conditions, actinidin preparations from fresh kiwi fruit contain both an active and inactive form of this enzyme. In this study, biochemical and immunological properties upon simulated gastro-intestinal digestion, as well as thermal stability, were investigated for both active and E-64-inhibited actinidin. RESULTS: Active actinidin retained its primary structure and proteolytic activity after 2 h of simulated gastric digestion, followed by 2 h of intestinal digestion, as assessed by SDS-PAGE, zymography and mass spectroscopy. Immunological reactivity of active actinidin was also preserved, as tested by immunoelectrophoresis. The E-64 inhibited actinidin was fully degraded after 1 h of pepsin treatment. Differential scanning calorimetry showed that active actinidin has one transition maximum temperature (T-m) at 73.9 degrees C, whereas in the E-64-actinidin complex the two actinidin domains unfolded independently, with the first domain having a T-m value of only 61 degrees C. CONCLUSION: Active actinidin is capable of reaching the intestinal mucosa in a proteolytically active and immunogenic state. Inhibitor binding induces changes in the actinidin molecule that go beyond inhibition of proteolytic activity, also influencing the digestion stability and T-m values of actinidin, features important in the characterisation of food allergens.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of the Science of Food and Agriculture
T1  - Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart
VL  - 94
IS  - 14
SP  - 3046
EP  - 3052
DO  - 10.1002/jsfa.6656
ER  - 
@article{
author = "Grozdanović, Milica and Ostojić, Sanja and Aleksić, Ivana and Anđelković, Uroš and Petersen, Arnd and Gavrović-Jankulović, Marija",
year = "2014",
abstract = "BACKGROUND: Actinidin is a cysteine protease and major allergen from kiwi fruit. When purified under specific native conditions, actinidin preparations from fresh kiwi fruit contain both an active and inactive form of this enzyme. In this study, biochemical and immunological properties upon simulated gastro-intestinal digestion, as well as thermal stability, were investigated for both active and E-64-inhibited actinidin. RESULTS: Active actinidin retained its primary structure and proteolytic activity after 2 h of simulated gastric digestion, followed by 2 h of intestinal digestion, as assessed by SDS-PAGE, zymography and mass spectroscopy. Immunological reactivity of active actinidin was also preserved, as tested by immunoelectrophoresis. The E-64 inhibited actinidin was fully degraded after 1 h of pepsin treatment. Differential scanning calorimetry showed that active actinidin has one transition maximum temperature (T-m) at 73.9 degrees C, whereas in the E-64-actinidin complex the two actinidin domains unfolded independently, with the first domain having a T-m value of only 61 degrees C. CONCLUSION: Active actinidin is capable of reaching the intestinal mucosa in a proteolytically active and immunogenic state. Inhibitor binding induces changes in the actinidin molecule that go beyond inhibition of proteolytic activity, also influencing the digestion stability and T-m values of actinidin, features important in the characterisation of food allergens.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of the Science of Food and Agriculture",
title = "Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart",
volume = "94",
number = "14",
pages = "3046-3052",
doi = "10.1002/jsfa.6656"
}
Grozdanović, M., Ostojić, S., Aleksić, I., Anđelković, U., Petersen, A.,& Gavrović-Jankulović, M.. (2014). Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart. in Journal of the Science of Food and Agriculture
Wiley-Blackwell, Hoboken., 94(14), 3046-3052.
https://doi.org/10.1002/jsfa.6656
Grozdanović M, Ostojić S, Aleksić I, Anđelković U, Petersen A, Gavrović-Jankulović M. Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart. in Journal of the Science of Food and Agriculture. 2014;94(14):3046-3052.
doi:10.1002/jsfa.6656 .
Grozdanović, Milica, Ostojić, Sanja, Aleksić, Ivana, Anđelković, Uroš, Petersen, Arnd, Gavrović-Jankulović, Marija, "Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart" in Journal of the Science of Food and Agriculture, 94, no. 14 (2014):3046-3052,
https://doi.org/10.1002/jsfa.6656 . .
7
18
11
18

In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)

Popović, Milica; Anđelković, Uroš; Grozdanović, Milica; Aleksić, Ivana; Gavrović-Jankulović, Marija

(Springer, New York, 2013)

TY  - JOUR
AU  - Popović, Milica
AU  - Anđelković, Uroš
AU  - Grozdanović, Milica
AU  - Aleksić, Ivana
AU  - Gavrović-Jankulović, Marija
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1290
AB  - The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 mu M CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules.
PB  - Springer, New York
T2  - Indian Journal of Microbiology
T1  - In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)
VL  - 53
IS  - 1
SP  - 100
EP  - 105
DO  - 10.1007/s12088-012-0319-2
ER  - 
@article{
author = "Popović, Milica and Anđelković, Uroš and Grozdanović, Milica and Aleksić, Ivana and Gavrović-Jankulović, Marija",
year = "2013",
abstract = "The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 mu M CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules.",
publisher = "Springer, New York",
journal = "Indian Journal of Microbiology",
title = "In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)",
volume = "53",
number = "1",
pages = "100-105",
doi = "10.1007/s12088-012-0319-2"
}
Popović, M., Anđelković, U., Grozdanović, M., Aleksić, I.,& Gavrović-Jankulović, M.. (2013). In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa). in Indian Journal of Microbiology
Springer, New York., 53(1), 100-105.
https://doi.org/10.1007/s12088-012-0319-2
Popović M, Anđelković U, Grozdanović M, Aleksić I, Gavrović-Jankulović M. In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa). in Indian Journal of Microbiology. 2013;53(1):100-105.
doi:10.1007/s12088-012-0319-2 .
Popović, Milica, Anđelković, Uroš, Grozdanović, Milica, Aleksić, Ivana, Gavrović-Jankulović, Marija, "In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)" in Indian Journal of Microbiology, 53, no. 1 (2013):100-105,
https://doi.org/10.1007/s12088-012-0319-2 . .
15
13
17

Conformational mobility of active and E-64-inhibited actinidin

Grozdanović, Milica; Drakulić, Branko; Gavrović-Jankulović, Marija

(Elsevier, 2013)

TY  - JOUR
AU  - Grozdanović, Milica
AU  - Drakulić, Branko
AU  - Gavrović-Jankulović, Marija
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2714
AB  - Background: Actinidin, a protease from kiwifruit, belongs to the C1 family of cysteine proteases. Cysteine proteases were found to be involved in many disease states and are valid therapeutic targets. Actinidin has a wide pH activity range and wide substrate specificity, which makes it a good model system for studying enzyme-substrate interactions. Methods: The influence of inhibitor (E-64) binding on the conformation of actinidin was examined by 2D PAGE, circular dichroism (CD) spectroscopy, hydrophobic ligand binding assay, and molecular dynamics simulations. Results: Significant differences were observed in electrophoretic mobility of proteolytically active and E-64-inhibited actinidin. CD spectrometry and hydrophobic ligand binding assay revealed a difference in conformation between active and inhibited actinidin. Molecular dynamics simulations showed that a loop defined by amino-acid residues 88-104 had greater conformational mobility in the inhibited enzyme than in the active one. During MD simulations, the covalently bound inhibitor was found to change its conformation from extended to folded, with the guanidino moiety approaching the carboxylate. Conclusions: Conformational mobility of actinidin changes upon binding of the inhibitor, leading to a sequence of events that enables water and ions to protrude into a newly formed cavity of the inhibited enzyme. Drastic conformational mobility of E-64, a common inhibitor of cysteine proteases found in many crystal structures stored in PDB, was also observed. General significance: The analysis of structural changes which occur upon binding of an inhibitor to a cysteine protease provides a valuable starting point for the future design of therapeutic agents. (c) 2013 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Biochimica et Biophysica Acta: General Subjects
T1  - Conformational mobility of active and E-64-inhibited actinidin
VL  - 1830
IS  - 10
SP  - 4790
EP  - 4799
DO  - 10.1016/j.bbagen.2013.06.015
ER  - 
@article{
author = "Grozdanović, Milica and Drakulić, Branko and Gavrović-Jankulović, Marija",
year = "2013",
abstract = "Background: Actinidin, a protease from kiwifruit, belongs to the C1 family of cysteine proteases. Cysteine proteases were found to be involved in many disease states and are valid therapeutic targets. Actinidin has a wide pH activity range and wide substrate specificity, which makes it a good model system for studying enzyme-substrate interactions. Methods: The influence of inhibitor (E-64) binding on the conformation of actinidin was examined by 2D PAGE, circular dichroism (CD) spectroscopy, hydrophobic ligand binding assay, and molecular dynamics simulations. Results: Significant differences were observed in electrophoretic mobility of proteolytically active and E-64-inhibited actinidin. CD spectrometry and hydrophobic ligand binding assay revealed a difference in conformation between active and inhibited actinidin. Molecular dynamics simulations showed that a loop defined by amino-acid residues 88-104 had greater conformational mobility in the inhibited enzyme than in the active one. During MD simulations, the covalently bound inhibitor was found to change its conformation from extended to folded, with the guanidino moiety approaching the carboxylate. Conclusions: Conformational mobility of actinidin changes upon binding of the inhibitor, leading to a sequence of events that enables water and ions to protrude into a newly formed cavity of the inhibited enzyme. Drastic conformational mobility of E-64, a common inhibitor of cysteine proteases found in many crystal structures stored in PDB, was also observed. General significance: The analysis of structural changes which occur upon binding of an inhibitor to a cysteine protease provides a valuable starting point for the future design of therapeutic agents. (c) 2013 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Biochimica et Biophysica Acta: General Subjects",
title = "Conformational mobility of active and E-64-inhibited actinidin",
volume = "1830",
number = "10",
pages = "4790-4799",
doi = "10.1016/j.bbagen.2013.06.015"
}
Grozdanović, M., Drakulić, B.,& Gavrović-Jankulović, M.. (2013). Conformational mobility of active and E-64-inhibited actinidin. in Biochimica et Biophysica Acta: General Subjects
Elsevier., 1830(10), 4790-4799.
https://doi.org/10.1016/j.bbagen.2013.06.015
Grozdanović M, Drakulić B, Gavrović-Jankulović M. Conformational mobility of active and E-64-inhibited actinidin. in Biochimica et Biophysica Acta: General Subjects. 2013;1830(10):4790-4799.
doi:10.1016/j.bbagen.2013.06.015 .
Grozdanović, Milica, Drakulić, Branko, Gavrović-Jankulović, Marija, "Conformational mobility of active and E-64-inhibited actinidin" in Biochimica et Biophysica Acta: General Subjects, 1830, no. 10 (2013):4790-4799,
https://doi.org/10.1016/j.bbagen.2013.06.015 . .
1
9
5
8