Milačić, Vesna

Link to this page

Authority KeyName Variants
f14c3927-f126-4758-9469-fb0c831ba8fc
  • Milačić, Vesna (2)
Projects

Author's Bibliography

Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers

Stefanović, Ivan; Gođevac, Dejan; Spirkova, Milena; Jovancic, Petar; Tešević, Vele; Milačić, Vesna; Pergal, Marija

(Assoc Chemical Engineers Serbia, Belgrade, 2016)

TY  - JOUR
AU  - Stefanović, Ivan
AU  - Gođevac, Dejan
AU  - Spirkova, Milena
AU  - Jovancic, Petar
AU  - Tešević, Vele
AU  - Milačić, Vesna
AU  - Pergal, Marija
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1989
AB  - Segmented thermoplastic polyurethane copolymers (PURs) were synthesized using 4,4'-methylenediphenyl diisocyanate and 1,4-butanediol as the hard segment and alpha,omega-dihydroxy-poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) (PPO-PDMS) as the soft segment. The content of incorporated soft segments in PURs varied in the range from 40 to 90 wt.%. The structure, molecular weights and crystallinity of obtained copolymers were monitored by FTIR, H-1- and 2D-NMR spectroscopy, and GPC and DSC analysis, respectively. Surface free energy analysis indicates the presence of hydrophobic (siloxane) groups on the surface, giving highly hydrophobic nature to the obtained PURs films. Water absorption measurements showed that the increase of the hydrophobic PPO-PDMS segment content led to the decrease of percentage of absorbed water in copolymers. SEM and AFM analysis revealed that copolymers with lower content of PPO-PDMS segments have higher microphase separation between segments. The results obtained in this work indicate that synthesized PURs based on PPO-PDMS demonstrated proper surface and morphological properties with a great potential for variety of applications such as hydrophobic coatings in biomedicine.
PB  - Assoc Chemical Engineers Serbia, Belgrade
T2  - Hemijska industrija
T1  - Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers
VL  - 70
IS  - 6
SP  - 725
EP  - 738
DO  - 10.2298/HEMIND151127009S
ER  - 
@article{
author = "Stefanović, Ivan and Gođevac, Dejan and Spirkova, Milena and Jovancic, Petar and Tešević, Vele and Milačić, Vesna and Pergal, Marija",
year = "2016",
abstract = "Segmented thermoplastic polyurethane copolymers (PURs) were synthesized using 4,4'-methylenediphenyl diisocyanate and 1,4-butanediol as the hard segment and alpha,omega-dihydroxy-poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) (PPO-PDMS) as the soft segment. The content of incorporated soft segments in PURs varied in the range from 40 to 90 wt.%. The structure, molecular weights and crystallinity of obtained copolymers were monitored by FTIR, H-1- and 2D-NMR spectroscopy, and GPC and DSC analysis, respectively. Surface free energy analysis indicates the presence of hydrophobic (siloxane) groups on the surface, giving highly hydrophobic nature to the obtained PURs films. Water absorption measurements showed that the increase of the hydrophobic PPO-PDMS segment content led to the decrease of percentage of absorbed water in copolymers. SEM and AFM analysis revealed that copolymers with lower content of PPO-PDMS segments have higher microphase separation between segments. The results obtained in this work indicate that synthesized PURs based on PPO-PDMS demonstrated proper surface and morphological properties with a great potential for variety of applications such as hydrophobic coatings in biomedicine.",
publisher = "Assoc Chemical Engineers Serbia, Belgrade",
journal = "Hemijska industrija",
title = "Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers",
volume = "70",
number = "6",
pages = "725-738",
doi = "10.2298/HEMIND151127009S"
}
Stefanović, I., Gođevac, D., Spirkova, M., Jovancic, P., Tešević, V., Milačić, V.,& Pergal, M.. (2016). Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers. in Hemijska industrija
Assoc Chemical Engineers Serbia, Belgrade., 70(6), 725-738.
https://doi.org/10.2298/HEMIND151127009S
Stefanović I, Gođevac D, Spirkova M, Jovancic P, Tešević V, Milačić V, Pergal M. Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers. in Hemijska industrija. 2016;70(6):725-738.
doi:10.2298/HEMIND151127009S .
Stefanović, Ivan, Gođevac, Dejan, Spirkova, Milena, Jovancic, Petar, Tešević, Vele, Milačić, Vesna, Pergal, Marija, "Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly-(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers" in Hemijska industrija, 70, no. 6 (2016):725-738,
https://doi.org/10.2298/HEMIND151127009S . .
6
5
7

Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane)

Pergal, Marija; Stefanović, Ivan; Gođevac, Dejan; Antić, Vesna; Milačić, Vesna; Ostojić, Sanja; Rogan, Jelena R.; Đonlagić, Jasna

(Serbian Chemical Society, 2014)

TY  - JOUR
AU  - Pergal, Marija
AU  - Stefanović, Ivan
AU  - Gođevac, Dejan
AU  - Antić, Vesna
AU  - Milačić, Vesna
AU  - Ostojić, Sanja
AU  - Rogan, Jelena R.
AU  - Đonlagić, Jasna
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1561
AB  - In this study, the synthesis, structure and physical properties of two series of thermoplastic polyurethanes based on hydroxypropyl-terminated poly(dimethylsiloxane) (HP-PDMS) or hydroxyethoxypropyl-terminated poly(dimethylsiloxane) (EO-PDMS) as soft segments, and 4,4'-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments were investigated. The polyurethanes were synthesized by two-step polyaddition in solution. The effects of the type and content of PDMS segments on the structure, thermal and surface properties of copolymers were studied by H-1-, C-13-nuclear magnetic resonance (NMR) spectroscopy and two-dimensional NMR spectroscopies (heteronuclear multiple bond correlation (HMBC) and rotating-frame nuclear Overhauser effect (ROESY)), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide-angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and water contact angle and water absorption measurements. Thermal properties investigated by DSC indicated that the presence of soft PDMS segments lowers the glass transition and melting temperatures of the hard phase as well as the degree of crystallinity. SEM analysis of the copolymers with a lower soft segment content confirmed the presence of spherulite superstructures, which arise from the crystallization of the hard segments. When compared with polyurethanes prepared from HP-PDMS, the copolymers synthesized from EO-PDMS with the same content of the soft segments had a higher degree of crystallinity, better thermal stability and a less hydrophobic surface. The obtained results showed that the synthesized polyurethanes had good thermal and surface properties, which could be further modified by changing the type or content of the soft segments.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane)
VL  - 79
IS  - 7
SP  - 843
DO  - 10.2298/JSC130819149P
ER  - 
@article{
author = "Pergal, Marija and Stefanović, Ivan and Gođevac, Dejan and Antić, Vesna and Milačić, Vesna and Ostojić, Sanja and Rogan, Jelena R. and Đonlagić, Jasna",
year = "2014",
abstract = "In this study, the synthesis, structure and physical properties of two series of thermoplastic polyurethanes based on hydroxypropyl-terminated poly(dimethylsiloxane) (HP-PDMS) or hydroxyethoxypropyl-terminated poly(dimethylsiloxane) (EO-PDMS) as soft segments, and 4,4'-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments were investigated. The polyurethanes were synthesized by two-step polyaddition in solution. The effects of the type and content of PDMS segments on the structure, thermal and surface properties of copolymers were studied by H-1-, C-13-nuclear magnetic resonance (NMR) spectroscopy and two-dimensional NMR spectroscopies (heteronuclear multiple bond correlation (HMBC) and rotating-frame nuclear Overhauser effect (ROESY)), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide-angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and water contact angle and water absorption measurements. Thermal properties investigated by DSC indicated that the presence of soft PDMS segments lowers the glass transition and melting temperatures of the hard phase as well as the degree of crystallinity. SEM analysis of the copolymers with a lower soft segment content confirmed the presence of spherulite superstructures, which arise from the crystallization of the hard segments. When compared with polyurethanes prepared from HP-PDMS, the copolymers synthesized from EO-PDMS with the same content of the soft segments had a higher degree of crystallinity, better thermal stability and a less hydrophobic surface. The obtained results showed that the synthesized polyurethanes had good thermal and surface properties, which could be further modified by changing the type or content of the soft segments.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane)",
volume = "79",
number = "7",
pages = "843",
doi = "10.2298/JSC130819149P"
}
Pergal, M., Stefanović, I., Gođevac, D., Antić, V., Milačić, V., Ostojić, S., Rogan, J. R.,& Đonlagić, J.. (2014). Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane). in Journal of the Serbian Chemical Society
Serbian Chemical Society., 79(7), 843.
https://doi.org/10.2298/JSC130819149P
Pergal M, Stefanović I, Gođevac D, Antić V, Milačić V, Ostojić S, Rogan JR, Đonlagić J. Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane). in Journal of the Serbian Chemical Society. 2014;79(7):843.
doi:10.2298/JSC130819149P .
Pergal, Marija, Stefanović, Ivan, Gođevac, Dejan, Antić, Vesna, Milačić, Vesna, Ostojić, Sanja, Rogan, Jelena R., Đonlagić, Jasna, "Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane)" in Journal of the Serbian Chemical Society, 79, no. 7 (2014):843,
https://doi.org/10.2298/JSC130819149P . .
13
14
18