Nestorov, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0003-1978-8646
  • Nestorov, Jelena (4)
  • Brkljačić, Jelena (2)

Author's Bibliography

Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites

Pergal, Marija; Brkljačić, Jelena; Tovilović-Kovačević, Gordana; Špírková, Milena; Kodranov, Igor; Manojlović, Dragan; Ostojić, Sanja; Knežević, Nikola Ž.

(Elsevier, 2021)

TY  - JOUR
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Tovilović-Kovačević, Gordana
AU  - Špírková, Milena
AU  - Kodranov, Igor
AU  - Manojlović, Dragan
AU  - Ostojić, Sanja
AU  - Knežević, Nikola Ž.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4016
AB  - Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.
PB  - Elsevier
T2  - Progress in Organic Coatings
T1  - Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites
VL  - 151
SP  - 106049
DO  - 10.1016/j.porgcoat.2020.106049
ER  - 
@article{
author = "Pergal, Marija and Brkljačić, Jelena and Tovilović-Kovačević, Gordana and Špírková, Milena and Kodranov, Igor and Manojlović, Dragan and Ostojić, Sanja and Knežević, Nikola Ž.",
year = "2021",
abstract = "Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.",
publisher = "Elsevier",
journal = "Progress in Organic Coatings",
title = "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites",
volume = "151",
pages = "106049",
doi = "10.1016/j.porgcoat.2020.106049"
}
Pergal, M., Brkljačić, J., Tovilović-Kovačević, G., Špírková, M., Kodranov, I., Manojlović, D., Ostojić, S.,& Knežević, N. Ž.. (2021). Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. in Progress in Organic Coatings
Elsevier., 151, 106049.
https://doi.org/10.1016/j.porgcoat.2020.106049
Pergal M, Brkljačić J, Tovilović-Kovačević G, Špírková M, Kodranov I, Manojlović D, Ostojić S, Knežević NŽ. Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. in Progress in Organic Coatings. 2021;151:106049.
doi:10.1016/j.porgcoat.2020.106049 .
Pergal, Marija, Brkljačić, Jelena, Tovilović-Kovačević, Gordana, Špírková, Milena, Kodranov, Igor, Manojlović, Dragan, Ostojić, Sanja, Knežević, Nikola Ž., "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites" in Progress in Organic Coatings, 151 (2021):106049,
https://doi.org/10.1016/j.porgcoat.2020.106049 . .
6
6

Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction

Platanović Arizanović, Lena; Nikolić-Kokić, Aleksandra; Brkljačić, Jelena; Tatalović, Nikola; Miler, Marko; Oreščanin-Dušić, Zorana; Vidonja Uzelac, Teodora; Nikolić, Milan; Milošević, Verica; Blagojević, Duško; Spasić, Snežana; Miljević, Čedo

(Taylor & Francis, 2021)

TY  - JOUR
AU  - Platanović Arizanović, Lena
AU  - Nikolić-Kokić, Aleksandra
AU  - Brkljačić, Jelena
AU  - Tatalović, Nikola
AU  - Miler, Marko
AU  - Oreščanin-Dušić, Zorana
AU  - Vidonja Uzelac, Teodora
AU  - Nikolić, Milan
AU  - Milošević, Verica
AU  - Blagojević, Duško
AU  - Spasić, Snežana
AU  - Miljević, Čedo
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3967
AB  - Chronic use of atypical antipsychotics may produce hepatic damage. Atypical antipsychotics, including clozapine, sertindole, and ziprasidone, are extensively metabolized by the liver and this process generates toxic-free radical metabolic intermediates which may contribute to liver damage. The aim of this study was to investigate whether clozapine, sertindole, or ziprasidone affected hepatic antioxidant defense enzymes which consequently led to disturbed redox homeostasis. The expression and activity of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and glutathione-S-transferases (GST) were measured in rat livers at doses corresponding to human antipsychotic therapy. Clozapine increased activity of SOD types 1 and 2, GR and GST, but reduced CAT activity. Sertindole elevated activities of both SODs. In ziprasidone-treated rats only decreased CAT activity was found. All three antipsychotics produced mild-to-moderate hepatic histopathological changes categorized as regenerative alterations. No apparent signs of immune cell infiltration, microvesicular or macrovesicular fatty change, or hepatocytes in mitosis were observed. In conclusion, a 4-week long daily treatment with clozapine, sertindole, or ziprasidone altered hepatic antioxidant enzyme activities and induced histopathological changes in liver. The most severe alterations were noted in clozapine-treated rats. Data indicate that redox disturbances may contribute to liver dysfunction after long-term atypical antipsychotic drug treatment.
PB  - Taylor & Francis
T2  - Journal of Toxicology and Environmental Health, Part A
T1  - Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction
VL  - 84
IS  - 4
SP  - 173
EP  - 182
DO  - 10.1080/15287394.2020.1844827
ER  - 
@article{
author = "Platanović Arizanović, Lena and Nikolić-Kokić, Aleksandra and Brkljačić, Jelena and Tatalović, Nikola and Miler, Marko and Oreščanin-Dušić, Zorana and Vidonja Uzelac, Teodora and Nikolić, Milan and Milošević, Verica and Blagojević, Duško and Spasić, Snežana and Miljević, Čedo",
year = "2021",
abstract = "Chronic use of atypical antipsychotics may produce hepatic damage. Atypical antipsychotics, including clozapine, sertindole, and ziprasidone, are extensively metabolized by the liver and this process generates toxic-free radical metabolic intermediates which may contribute to liver damage. The aim of this study was to investigate whether clozapine, sertindole, or ziprasidone affected hepatic antioxidant defense enzymes which consequently led to disturbed redox homeostasis. The expression and activity of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and glutathione-S-transferases (GST) were measured in rat livers at doses corresponding to human antipsychotic therapy. Clozapine increased activity of SOD types 1 and 2, GR and GST, but reduced CAT activity. Sertindole elevated activities of both SODs. In ziprasidone-treated rats only decreased CAT activity was found. All three antipsychotics produced mild-to-moderate hepatic histopathological changes categorized as regenerative alterations. No apparent signs of immune cell infiltration, microvesicular or macrovesicular fatty change, or hepatocytes in mitosis were observed. In conclusion, a 4-week long daily treatment with clozapine, sertindole, or ziprasidone altered hepatic antioxidant enzyme activities and induced histopathological changes in liver. The most severe alterations were noted in clozapine-treated rats. Data indicate that redox disturbances may contribute to liver dysfunction after long-term atypical antipsychotic drug treatment.",
publisher = "Taylor & Francis",
journal = "Journal of Toxicology and Environmental Health, Part A",
title = "Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction",
volume = "84",
number = "4",
pages = "173-182",
doi = "10.1080/15287394.2020.1844827"
}
Platanović Arizanović, L., Nikolić-Kokić, A., Brkljačić, J., Tatalović, N., Miler, M., Oreščanin-Dušić, Z., Vidonja Uzelac, T., Nikolić, M., Milošević, V., Blagojević, D., Spasić, S.,& Miljević, Č.. (2021). Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction. in Journal of Toxicology and Environmental Health, Part A
Taylor & Francis., 84(4), 173-182.
https://doi.org/10.1080/15287394.2020.1844827
Platanović Arizanović L, Nikolić-Kokić A, Brkljačić J, Tatalović N, Miler M, Oreščanin-Dušić Z, Vidonja Uzelac T, Nikolić M, Milošević V, Blagojević D, Spasić S, Miljević Č. Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction. in Journal of Toxicology and Environmental Health, Part A. 2021;84(4):173-182.
doi:10.1080/15287394.2020.1844827 .
Platanović Arizanović, Lena, Nikolić-Kokić, Aleksandra, Brkljačić, Jelena, Tatalović, Nikola, Miler, Marko, Oreščanin-Dušić, Zorana, Vidonja Uzelac, Teodora, Nikolić, Milan, Milošević, Verica, Blagojević, Duško, Spasić, Snežana, Miljević, Čedo, "Effects of several atypical antipsychotics closapine, sertindole or ziprasidone on hepatic antioxidant enzymes: Possible role in drug-induced liver dysfunction" in Journal of Toxicology and Environmental Health, Part A, 84, no. 4 (2021):173-182,
https://doi.org/10.1080/15287394.2020.1844827 . .
5
4

Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells

Stefanović, Ivan; Đonlagić, Jasna; Tovilović, Gordana; Nestorov, Jelena; Antić, Vesna; Ostojić, Sanja; Pergal, Marija

(Wiley-Blackwell, Hoboken, 2015)

TY  - JOUR
AU  - Stefanović, Ivan
AU  - Đonlagić, Jasna
AU  - Tovilović, Gordana
AU  - Nestorov, Jelena
AU  - Antić, Vesna
AU  - Ostojić, Sanja
AU  - Pergal, Marija
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1779
AB  - Polyurethane copolymers based on ,-dihydroxypropyl poly(dimethylsiloxane) (PDMS) with a range of soft segment contents were prepared by two-stage polymerization, and their microstructures, thermal, thermomechanical, and surface properties, as well as in vitro hemo- and cytocompatibility were evaluated. All utilized characterization methods confirmed the existence of moderately microphase separated structures with the appearance of some microphase mixing between segments as the PDMS (i.e., soft segment) content increased. Copolymers showed higher crystallinity, storage moduli, surface roughness, and surface free energy, but less hydrophobicity with decreasing PDMS content. Biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact, an extraction method and after pretreatment of copolymers with multicomponent protein mixture, as well as by a competitive protein adsorption assay. Copolymers showed no toxic effect to endothelial cells and all copolymers, except that with the lowest PDMS content, exhibited resistance to endothelial cell adhesion, suggesting their unsuitability for long-term biomedical devices which particularly require re-endothelialization. All copolymers exhibited excellent resistance to fibrinogen adsorption and adsorbed more albumin than fibrinogen in the competitive adsorption assay, suggesting their good hemocompatibility. The noncytotoxic chemistry of these synthesized materials, combined with their nonadherent properties which are inhospitable to cell attachment and growth, underlie the need for further investigations to clarify their potential for use in short-term biomedical devices.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells
VL  - 103
IS  - 4
SP  - 1459
EP  - 1475
DO  - 10.1002/jbm.a.35285
ER  - 
@article{
author = "Stefanović, Ivan and Đonlagić, Jasna and Tovilović, Gordana and Nestorov, Jelena and Antić, Vesna and Ostojić, Sanja and Pergal, Marija",
year = "2015",
abstract = "Polyurethane copolymers based on ,-dihydroxypropyl poly(dimethylsiloxane) (PDMS) with a range of soft segment contents were prepared by two-stage polymerization, and their microstructures, thermal, thermomechanical, and surface properties, as well as in vitro hemo- and cytocompatibility were evaluated. All utilized characterization methods confirmed the existence of moderately microphase separated structures with the appearance of some microphase mixing between segments as the PDMS (i.e., soft segment) content increased. Copolymers showed higher crystallinity, storage moduli, surface roughness, and surface free energy, but less hydrophobicity with decreasing PDMS content. Biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact, an extraction method and after pretreatment of copolymers with multicomponent protein mixture, as well as by a competitive protein adsorption assay. Copolymers showed no toxic effect to endothelial cells and all copolymers, except that with the lowest PDMS content, exhibited resistance to endothelial cell adhesion, suggesting their unsuitability for long-term biomedical devices which particularly require re-endothelialization. All copolymers exhibited excellent resistance to fibrinogen adsorption and adsorbed more albumin than fibrinogen in the competitive adsorption assay, suggesting their good hemocompatibility. The noncytotoxic chemistry of these synthesized materials, combined with their nonadherent properties which are inhospitable to cell attachment and growth, underlie the need for further investigations to clarify their potential for use in short-term biomedical devices.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells",
volume = "103",
number = "4",
pages = "1459-1475",
doi = "10.1002/jbm.a.35285"
}
Stefanović, I., Đonlagić, J., Tovilović, G., Nestorov, J., Antić, V., Ostojić, S.,& Pergal, M.. (2015). Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells. in Journal of Biomedical Materials Research Part A
Wiley-Blackwell, Hoboken., 103(4), 1459-1475.
https://doi.org/10.1002/jbm.a.35285
Stefanović I, Đonlagić J, Tovilović G, Nestorov J, Antić V, Ostojić S, Pergal M. Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells. in Journal of Biomedical Materials Research Part A. 2015;103(4):1459-1475.
doi:10.1002/jbm.a.35285 .
Stefanović, Ivan, Đonlagić, Jasna, Tovilović, Gordana, Nestorov, Jelena, Antić, Vesna, Ostojić, Sanja, Pergal, Marija, "Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells" in Journal of Biomedical Materials Research Part A, 103, no. 4 (2015):1459-1475,
https://doi.org/10.1002/jbm.a.35285 . .
11
9
16

Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility

Pergal, Marija; Nestorov, Jelena; Tovilović, Gordana; Ostojić, Sanja; Gođevac, Dejan; Vasiljević-Radović, Dana; Đonlagić, Jasna

(Wiley-Blackwell, Hoboken, 2014)

TY  - JOUR
AU  - Pergal, Marija
AU  - Nestorov, Jelena
AU  - Tovilović, Gordana
AU  - Ostojić, Sanja
AU  - Gođevac, Dejan
AU  - Vasiljević-Radović, Dana
AU  - Đonlagić, Jasna
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1398
AB  - Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on alpha,omega-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by H-1 NMR, quantitative C-13 NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Biomedical Materials Research Part A
T1  - Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility
VL  - 102
IS  - 11
SP  - 3951
EP  - 3964
DO  - 10.1002/jbm.a.35071
ER  - 
@article{
author = "Pergal, Marija and Nestorov, Jelena and Tovilović, Gordana and Ostojić, Sanja and Gođevac, Dejan and Vasiljević-Radović, Dana and Đonlagić, Jasna",
year = "2014",
abstract = "Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on alpha,omega-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by H-1 NMR, quantitative C-13 NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Biomedical Materials Research Part A",
title = "Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility",
volume = "102",
number = "11",
pages = "3951-3964",
doi = "10.1002/jbm.a.35071"
}
Pergal, M., Nestorov, J., Tovilović, G., Ostojić, S., Gođevac, D., Vasiljević-Radović, D.,& Đonlagić, J.. (2014). Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility. in Journal of Biomedical Materials Research Part A
Wiley-Blackwell, Hoboken., 102(11), 3951-3964.
https://doi.org/10.1002/jbm.a.35071
Pergal M, Nestorov J, Tovilović G, Ostojić S, Gođevac D, Vasiljević-Radović D, Đonlagić J. Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility. in Journal of Biomedical Materials Research Part A. 2014;102(11):3951-3964.
doi:10.1002/jbm.a.35071 .
Pergal, Marija, Nestorov, Jelena, Tovilović, Gordana, Ostojić, Sanja, Gođevac, Dejan, Vasiljević-Radović, Dana, Đonlagić, Jasna, "Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility" in Journal of Biomedical Materials Research Part A, 102, no. 11 (2014):3951-3964,
https://doi.org/10.1002/jbm.a.35071 . .
44
36
48

Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes

Pergal, Marija; Nestorov, Jelena; Tovilović-Kovačević, Gordana; Jovančić, Petar; Pezo, Lato; Vasiljević-Radović, Dana; Đonlagić, Jasna

(Association of Chemical Engineers of Serbia, 2014)

TY  - JOUR
AU  - Pergal, Marija
AU  - Nestorov, Jelena
AU  - Tovilović-Kovačević, Gordana
AU  - Jovančić, Petar
AU  - Pezo, Lato
AU  - Vasiljević-Radović, Dana
AU  - Đonlagić, Jasna
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1456
AB  - Segmented polyurethanes based on poly(dimethylsiloxane), currently used for biomedical applications, have sub-optimal biocompatibility which reduces their efficacy. Improving the endothelial cell attachment and blood-contacting properties of PDMS-based copolymers would substantially improve their clinical applications. We have studied the surface properties and in vitro biocompatibility of two series of segmented poly(urethane-dimethylsiloxane)s (SPU-PDMS) based on hydroxypropyl- and hydroxyethoxypropyl-terminated PDMS with potential applications in blood-contacting medical devices. SPU-PDMS copolymers were characterized by contact angle measurements, surface free energy determination (calculated using the van Oss-Chaudhury-Good and Owens-Wendt methods), and atomic force microscopy. The biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact assay, before and after pre-treatment of copolymers with multicomponent protein mixture, as well as by a competitive blood-protein adsorption assay. The obtained results suggested good blood compatibility of synthesized copolymers. All copolymers exhibited good resistance to fibrinogen adsorption and all favored albumin adsorption. Copolymers based on hydroxyethoxypropyl-PDMS had lower hydrophobicity, higher surface free energy and better microphase separation in comparison with hydroxypropyl-PDMS-based copolymers, which promoted better endothelial cell attachment and growth on the surface of these polymers as compared to hydroxypropyl-PDMS-based copolymers. The results showed that SPU-PDMS copolymers display good surface properties, depending on the type of soft PDMS segments, which can be tailored for biomedical application requirements such as biomedical devices for short- and long-term uses.
AB  - Segmentirani poliuretani na bazi poli(dimetilsiloksana), koji se trenutno koriste u biomedicini, imaju biokompatibilnost ispod optimalne što smanjuje njihovu efikasnost. Poboljšavajući vezivanje endotelnih ćelija i svojstva kopolimera na bazi PDMS u dodiru sa krvlju značajno bi se poboljšala i proširila njihova klinička primena. U ovom radu su proučavana površinska svojstva i in vitro biokompatibilnost dve serije segmentiranih poli(uretan-dimetilsiloksana) (SPU-PDMS) na bazi hidroksipropil- i hidroksietoksipropil- PDMS pretpolimera sa potencijalnim primenama u medicinskim uredjajima u kontaktu sa krvlju. SPU-PDMS kopolimeri su karakterisani merenjem kontaktnih uglova, određivanjem površinske energije (izračunate prema van Oss-Chaudhury-Good i Owens-Wendt metodama), i mikroskopijom atomskih sila. Biokompatibilnost kopolimera je ispitivana primenom endotelnih EA.hy926 ćelija u direktnom kontaktu, pre i nakon pretretiranja kopolimera sa višekomponentnom smešom proteina, kao i pomoću kompetitivne adsorpcije proteina. Dobijeni rezultati su potvrdili da sintetisani kopolimeri imaju dobru kompatibilnost prema krvi. Svi sintetisani kopolimeri pokazivali su dobru otpornost prema adsorpciji fibrinogena i svi kopolimeri su favorizovali adsorpciju albumina. Kopolimeri na bazi hidroksietoksipropil-PDMS imali su manju hidrofobnost, veću površinsku energiju, i bolju mikrofaznu separaciju u poređenju sa kopolimerima na bazi hidroksipropil-PDMS, što je dovelo do boljeg vezivanja i rasta endotelnih ćelija na površini ovih polimera u poređenju sa kopolimerima na bazi hidroksipropil-PDMS. Rezultati su pokazali da SPU-PDMS kopolimeri prikazuju dobra površinska svojstva, zavisno od vrste mekih PDMS segmenata, koja se mogu prilagođavati zahtevima u biomedicini, kao što su biomedicinski uređaji za kratkoročnu i dugoročnu upotrebu.
PB  - Association of Chemical Engineers of Serbia
T2  - Hemijska industrija
T1  - Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes
T1  - Površinska karakterizacija, hemo- i citokompatibilnost segmentiranih poliuretana na bazi poli(dimetilsiloksana)
VL  - 68
IS  - 6
SP  - 731
EP  - 741
DO  - 10.2298/HEMIND141103082P
ER  - 
@article{
author = "Pergal, Marija and Nestorov, Jelena and Tovilović-Kovačević, Gordana and Jovančić, Petar and Pezo, Lato and Vasiljević-Radović, Dana and Đonlagić, Jasna",
year = "2014",
abstract = "Segmented polyurethanes based on poly(dimethylsiloxane), currently used for biomedical applications, have sub-optimal biocompatibility which reduces their efficacy. Improving the endothelial cell attachment and blood-contacting properties of PDMS-based copolymers would substantially improve their clinical applications. We have studied the surface properties and in vitro biocompatibility of two series of segmented poly(urethane-dimethylsiloxane)s (SPU-PDMS) based on hydroxypropyl- and hydroxyethoxypropyl-terminated PDMS with potential applications in blood-contacting medical devices. SPU-PDMS copolymers were characterized by contact angle measurements, surface free energy determination (calculated using the van Oss-Chaudhury-Good and Owens-Wendt methods), and atomic force microscopy. The biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact assay, before and after pre-treatment of copolymers with multicomponent protein mixture, as well as by a competitive blood-protein adsorption assay. The obtained results suggested good blood compatibility of synthesized copolymers. All copolymers exhibited good resistance to fibrinogen adsorption and all favored albumin adsorption. Copolymers based on hydroxyethoxypropyl-PDMS had lower hydrophobicity, higher surface free energy and better microphase separation in comparison with hydroxypropyl-PDMS-based copolymers, which promoted better endothelial cell attachment and growth on the surface of these polymers as compared to hydroxypropyl-PDMS-based copolymers. The results showed that SPU-PDMS copolymers display good surface properties, depending on the type of soft PDMS segments, which can be tailored for biomedical application requirements such as biomedical devices for short- and long-term uses., Segmentirani poliuretani na bazi poli(dimetilsiloksana), koji se trenutno koriste u biomedicini, imaju biokompatibilnost ispod optimalne što smanjuje njihovu efikasnost. Poboljšavajući vezivanje endotelnih ćelija i svojstva kopolimera na bazi PDMS u dodiru sa krvlju značajno bi se poboljšala i proširila njihova klinička primena. U ovom radu su proučavana površinska svojstva i in vitro biokompatibilnost dve serije segmentiranih poli(uretan-dimetilsiloksana) (SPU-PDMS) na bazi hidroksipropil- i hidroksietoksipropil- PDMS pretpolimera sa potencijalnim primenama u medicinskim uredjajima u kontaktu sa krvlju. SPU-PDMS kopolimeri su karakterisani merenjem kontaktnih uglova, određivanjem površinske energije (izračunate prema van Oss-Chaudhury-Good i Owens-Wendt metodama), i mikroskopijom atomskih sila. Biokompatibilnost kopolimera je ispitivana primenom endotelnih EA.hy926 ćelija u direktnom kontaktu, pre i nakon pretretiranja kopolimera sa višekomponentnom smešom proteina, kao i pomoću kompetitivne adsorpcije proteina. Dobijeni rezultati su potvrdili da sintetisani kopolimeri imaju dobru kompatibilnost prema krvi. Svi sintetisani kopolimeri pokazivali su dobru otpornost prema adsorpciji fibrinogena i svi kopolimeri su favorizovali adsorpciju albumina. Kopolimeri na bazi hidroksietoksipropil-PDMS imali su manju hidrofobnost, veću površinsku energiju, i bolju mikrofaznu separaciju u poređenju sa kopolimerima na bazi hidroksipropil-PDMS, što je dovelo do boljeg vezivanja i rasta endotelnih ćelija na površini ovih polimera u poređenju sa kopolimerima na bazi hidroksipropil-PDMS. Rezultati su pokazali da SPU-PDMS kopolimeri prikazuju dobra površinska svojstva, zavisno od vrste mekih PDMS segmenata, koja se mogu prilagođavati zahtevima u biomedicini, kao što su biomedicinski uređaji za kratkoročnu i dugoročnu upotrebu.",
publisher = "Association of Chemical Engineers of Serbia",
journal = "Hemijska industrija",
title = "Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes, Površinska karakterizacija, hemo- i citokompatibilnost segmentiranih poliuretana na bazi poli(dimetilsiloksana)",
volume = "68",
number = "6",
pages = "731-741",
doi = "10.2298/HEMIND141103082P"
}
Pergal, M., Nestorov, J., Tovilović-Kovačević, G., Jovančić, P., Pezo, L., Vasiljević-Radović, D.,& Đonlagić, J.. (2014). Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes. in Hemijska industrija
Association of Chemical Engineers of Serbia., 68(6), 731-741.
https://doi.org/10.2298/HEMIND141103082P
Pergal M, Nestorov J, Tovilović-Kovačević G, Jovančić P, Pezo L, Vasiljević-Radović D, Đonlagić J. Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes. in Hemijska industrija. 2014;68(6):731-741.
doi:10.2298/HEMIND141103082P .
Pergal, Marija, Nestorov, Jelena, Tovilović-Kovačević, Gordana, Jovančić, Petar, Pezo, Lato, Vasiljević-Radović, Dana, Đonlagić, Jasna, "Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes" in Hemijska industrija, 68, no. 6 (2014):731-741,
https://doi.org/10.2298/HEMIND141103082P . .
4
2
6

In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone)

Pergal, Marija; Antić, Vesna; Tovilović, Gordana; Nestorov, Jelena; Vasiljević-Radović, Dana; Đonlagić, Jasna

(Taylor & Francis Ltd, Abingdon, 2012)

TY  - JOUR
AU  - Pergal, Marija
AU  - Antić, Vesna
AU  - Tovilović, Gordana
AU  - Nestorov, Jelena
AU  - Vasiljević-Radović, Dana
AU  - Đonlagić, Jasna
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1110
AB  - Novel polyurethane co-polymers (TPUs), based on poly(epsilon-caprolactone)-block-poly(dimethylsiloxane)-block-poly(epsilon-caprolactone) (PCL-PDMS-PCL) as soft segment and 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) as hard segment, were synthesized and evaluated for biomedical applications. The content of hard segments (HS) in the polymer chains was varied from 9 to 63 wt%. The influence of the content and length of the HS on the thermal, surface, mechanical properties and biocompatibility was investigated. The structure, composition and HS length were examined using H-1- and quantitative C-13-NMR spectroscopy. DSC results implied that the synthesized TPUs were semicrystalline polymers in which both the hard MDI/BD and soft PCL-PDMS-PCL segments participated. It was found that an increase in the average HS length (from 1.2 to 14.4 MDI/BD units) was accompanied by an increase in the crystallinity of the hard segments, storage moduli, hydrophilicity and degree of microphase separation of the co-polymers. Depending on the HS content, a gradual variation in surface properties of co-polymers was revealed by FTIR, AFM and static water contact angle measurements. The in vitro biocompatibility of co-polymers was evaluated using the endothelial EA. hy926 cell line and protein adsorption on the polyurethane films. All synthesized TPUs adsorbed more albumin than fibrinogen from multicomponent protein mixture, which may indicate biocompatibility. The polyurethane films with high HS content and/or high roughness coefficient exhibit good surface properties and biocompatible behavior, which was confirmed by non-toxic effects to cells and good cell adhesion. Therefore, the non-cytotoxic chemistry of the co-polymers makes them good candidates for further development as biomedical implants.
PB  - Taylor & Francis Ltd, Abingdon
T2  - Journal of Biomaterials Science-Polymer Edition
T1  - In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone)
VL  - 23
IS  - 13
SP  - 1629
EP  - 1657
DO  - 10.1163/092050611X589338
ER  - 
@article{
author = "Pergal, Marija and Antić, Vesna and Tovilović, Gordana and Nestorov, Jelena and Vasiljević-Radović, Dana and Đonlagić, Jasna",
year = "2012",
abstract = "Novel polyurethane co-polymers (TPUs), based on poly(epsilon-caprolactone)-block-poly(dimethylsiloxane)-block-poly(epsilon-caprolactone) (PCL-PDMS-PCL) as soft segment and 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) as hard segment, were synthesized and evaluated for biomedical applications. The content of hard segments (HS) in the polymer chains was varied from 9 to 63 wt%. The influence of the content and length of the HS on the thermal, surface, mechanical properties and biocompatibility was investigated. The structure, composition and HS length were examined using H-1- and quantitative C-13-NMR spectroscopy. DSC results implied that the synthesized TPUs were semicrystalline polymers in which both the hard MDI/BD and soft PCL-PDMS-PCL segments participated. It was found that an increase in the average HS length (from 1.2 to 14.4 MDI/BD units) was accompanied by an increase in the crystallinity of the hard segments, storage moduli, hydrophilicity and degree of microphase separation of the co-polymers. Depending on the HS content, a gradual variation in surface properties of co-polymers was revealed by FTIR, AFM and static water contact angle measurements. The in vitro biocompatibility of co-polymers was evaluated using the endothelial EA. hy926 cell line and protein adsorption on the polyurethane films. All synthesized TPUs adsorbed more albumin than fibrinogen from multicomponent protein mixture, which may indicate biocompatibility. The polyurethane films with high HS content and/or high roughness coefficient exhibit good surface properties and biocompatible behavior, which was confirmed by non-toxic effects to cells and good cell adhesion. Therefore, the non-cytotoxic chemistry of the co-polymers makes them good candidates for further development as biomedical implants.",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Journal of Biomaterials Science-Polymer Edition",
title = "In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone)",
volume = "23",
number = "13",
pages = "1629-1657",
doi = "10.1163/092050611X589338"
}
Pergal, M., Antić, V., Tovilović, G., Nestorov, J., Vasiljević-Radović, D.,& Đonlagić, J.. (2012). In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone). in Journal of Biomaterials Science-Polymer Edition
Taylor & Francis Ltd, Abingdon., 23(13), 1629-1657.
https://doi.org/10.1163/092050611X589338
Pergal M, Antić V, Tovilović G, Nestorov J, Vasiljević-Radović D, Đonlagić J. In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone). in Journal of Biomaterials Science-Polymer Edition. 2012;23(13):1629-1657.
doi:10.1163/092050611X589338 .
Pergal, Marija, Antić, Vesna, Tovilović, Gordana, Nestorov, Jelena, Vasiljević-Radović, Dana, Đonlagić, Jasna, "In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(epsilon-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(epsilon-Caprolactone)" in Journal of Biomaterials Science-Polymer Edition, 23, no. 13 (2012):1629-1657,
https://doi.org/10.1163/092050611X589338 . .
27
31
39