Katavic, B.

Link to this page

Authority KeyName Variants
5908f293-d754-4c40-9ad6-1c22e86d35fe
  • Katavic, B. (1)
Projects

Author's Bibliography

Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation

Kozić, M.; Ristić, Slavica S.; Katavic, B.; Jegdić, Bore; Prvulović, M.; Prokolab, M.; Linić, Suzana

(Society for Structural Integrity and Life, Institute for Material Testing, 2017)

TY  - JOUR
AU  - Kozić, M.
AU  - Ristić, Slavica S.
AU  - Katavic, B.
AU  - Jegdić, Bore
AU  - Prvulović, M.
AU  - Prokolab, M.
AU  - Linić, Suzana
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2216
AB  - Numerical simulation of 3D multiphase flow is performed to determine the velocity field in the fan mill. The mixture model of the Euler-Euler approach is used. Recirculating gas is a primary phase that carries granular phases including the coal powder and sand. The latter causes heavy wear of mill impact plates. The optimal form of hardfacing geometry and technology has an impact both on velocity magnitude and direction of flow in such a way as to reduce plate wear. This paper presents results of surface modification (based on numerical simulation), implemented on impact plates of the fan mill in the Kostolac B power plant in Serbia. Fishbone hardfacing is made in order to increase the lifetime of impact plates and extend the period between overhauls of fan mills. The experimental tests of fishbone surfacing plates, in exploitation conditions, show that the applied modification, hardfacing technologies and coating materials, give expected results. The application of this hardfacing in the form of a fishbone is simpler, faster and more economical compared to complete overlaying and honeycomb impact plate surfacing. The relative weight loss of base plate after an 1440-hour period of exploitation is 8%, while the weight losses for the hard-faced plate is below 7%.
PB  - Society for Structural Integrity and Life, Institute for Material Testing
T2  - Structural Integrity and Life
T1  - Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation
VL  - 17
IS  - 3
SP  - 221
EP  - 228
UR  - https://hdl.handle.net/21.15107/rcub_cer_2216
ER  - 
@article{
author = "Kozić, M. and Ristić, Slavica S. and Katavic, B. and Jegdić, Bore and Prvulović, M. and Prokolab, M. and Linić, Suzana",
year = "2017",
abstract = "Numerical simulation of 3D multiphase flow is performed to determine the velocity field in the fan mill. The mixture model of the Euler-Euler approach is used. Recirculating gas is a primary phase that carries granular phases including the coal powder and sand. The latter causes heavy wear of mill impact plates. The optimal form of hardfacing geometry and technology has an impact both on velocity magnitude and direction of flow in such a way as to reduce plate wear. This paper presents results of surface modification (based on numerical simulation), implemented on impact plates of the fan mill in the Kostolac B power plant in Serbia. Fishbone hardfacing is made in order to increase the lifetime of impact plates and extend the period between overhauls of fan mills. The experimental tests of fishbone surfacing plates, in exploitation conditions, show that the applied modification, hardfacing technologies and coating materials, give expected results. The application of this hardfacing in the form of a fishbone is simpler, faster and more economical compared to complete overlaying and honeycomb impact plate surfacing. The relative weight loss of base plate after an 1440-hour period of exploitation is 8%, while the weight losses for the hard-faced plate is below 7%.",
publisher = "Society for Structural Integrity and Life, Institute for Material Testing",
journal = "Structural Integrity and Life",
title = "Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation",
volume = "17",
number = "3",
pages = "221-228",
url = "https://hdl.handle.net/21.15107/rcub_cer_2216"
}
Kozić, M., Ristić, S. S., Katavic, B., Jegdić, B., Prvulović, M., Prokolab, M.,& Linić, S.. (2017). Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation. in Structural Integrity and Life
Society for Structural Integrity and Life, Institute for Material Testing., 17(3), 221-228.
https://hdl.handle.net/21.15107/rcub_cer_2216
Kozić M, Ristić SS, Katavic B, Jegdić B, Prvulović M, Prokolab M, Linić S. Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation. in Structural Integrity and Life. 2017;17(3):221-228.
https://hdl.handle.net/21.15107/rcub_cer_2216 .
Kozić, M., Ristić, Slavica S., Katavic, B., Jegdić, Bore, Prvulović, M., Prokolab, M., Linić, Suzana, "Wear resistance improvement of thermal plant fan mill impact plates based on numerical flow simulation" in Structural Integrity and Life, 17, no. 3 (2017):221-228,
https://hdl.handle.net/21.15107/rcub_cer_2216 .