Lazović, Goran

Link to this page

Authority KeyName Variants
orcid::0000-0002-6556-4056
  • Lazović, Goran (3)
Projects

Author's Bibliography

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4837
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
VL  - 570
IS  - 1
SP  - 145
EP  - 152
DO  - 10.1080/00150193.2020.1839265
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
volume = "570",
number = "1",
pages = "145-152",
doi = "10.1080/00150193.2020.1839265"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 . .
15
4
15

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3584
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.
PB  - MDPI
T2  - Applied Sciences
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
VL  - 10
SP  - 3485
DO  - 10.3390/app10103485
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient
scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3
modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated
at a sintering temperature of 1350  C. Within the study, the new frontiers for di erent electronic
properties between the layers of BaTiO3 grains have been introduced. The research target was
grain boundary investigations and the influence on dielectric properties. After scanning electron
microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with
larger grains showed a better compact state that led to a higher dielectric constant value. DC bias
stability was also investigated and showed a connection between the grain size and capacitance
stability. Analyses of functions that could approximate experimental curves were successfully
employed. Practical application of fractal corrections was performed, based on surface ( s) and
pore size ( p) corrections, which resulted in obtainment of the relation between the capacitance and
Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature
dependence for a set of experimental data is an important step towards further miniaturization of
intergranular capacitors.",
publisher = "MDPI",
journal = "Applied Sciences",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
volume = "10",
pages = "3485",
doi = "10.3390/app10103485"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences
MDPI., 10, 3485.
https://doi.org/10.3390/app10103485
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences. 2020;10:3485.
doi:10.3390/app10103485 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" in Applied Sciences, 10 (2020):3485,
https://doi.org/10.3390/app10103485 . .
4
1
4

The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination

Mitić, Vojislav V.; Lazović, Goran; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Fecht, Hans; Vlahović, Branislav

(Taylor & Francis, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Fecht, Hans
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4004
AB  - This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.
PB  - Taylor & Francis
T2  - Integrated Ferroelectrics
T1  - The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination
VL  - 212
IS  - 1
SP  - 135
EP  - 146
DO  - 10.1080/10584587.2020.1819042
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Fecht, Hans and Vlahović, Branislav",
year = "2020",
abstract = "This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nanoBaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop
the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a
simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics
parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U), and relative capacitance change, from the level of the bulk sample down to the grains boundaries.",
publisher = "Taylor & Francis",
journal = "Integrated Ferroelectrics",
title = "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination",
volume = "212",
number = "1",
pages = "135-146",
doi = "10.1080/10584587.2020.1819042"
}
Mitić, V. V., Lazović, G., Ribar, S., Lu, C., Radović, I., Stajčić, A., Fecht, H.,& Vlahović, B.. (2020). The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics
Taylor & Francis., 212(1), 135-146.
https://doi.org/10.1080/10584587.2020.1819042
Mitić VV, Lazović G, Ribar S, Lu C, Radović I, Stajčić A, Fecht H, Vlahović B. The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics. 2020;212(1):135-146.
doi:10.1080/10584587.2020.1819042 .
Mitić, Vojislav V., Lazović, Goran, Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Fecht, Hans, Vlahović, Branislav, "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination" in Integrated Ferroelectrics, 212, no. 1 (2020):135-146,
https://doi.org/10.1080/10584587.2020.1819042 . .
11
4
10