Babić Radić, Marija M.

Link to this page

Authority KeyName Variants
orcid::0000-0002-9338-5725
  • Babić Radić, Marija M. (3)
Projects

Author's Bibliography

Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite

Filipović, Vuk; Babić Radić, Marija M.; Vuković, Jovana S.; Vukomanović, Marija; Rubert, Marina; Hofmann, Sandra; Müller, Ralph; Tomić, Simonida Lj.

(MDPI, 2022)

TY  - JOUR
AU  - Filipović, Vuk
AU  - Babić Radić, Marija M.
AU  - Vuković, Jovana S.
AU  - Vukomanović, Marija
AU  - Rubert, Marina
AU  - Hofmann, Sandra
AU  - Müller, Ralph
AU  - Tomić, Simonida Lj.
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5309
AB  - New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-
hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component,
nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer,
to be able to tune the structure and the physicochemical and mechanical properties, and a natural
polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied.
The goal was to make a new material with superior properties for applications in the biomedical
field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegrad able PHEMA hydrogel was obtained by crosslinking HEMA by poly(β-amino esters) (PBAE). The
scaffold’s physicochemical and mechanical properties, in vitro degradation, and biological activity
were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin)
hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity,
swelling, porosity, and percent of mass loss during degradation than the samples obtained by poro genation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated
samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss,
and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate,
which was 15–20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of
culture was higher in the composites, although not statistically different. After 28 days, cell metabolic
activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the
scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which
influenced the mechanical behavior, structure, physicochemical properties, and interactions with
biological species.
PB  - MDPI
T2  - Polymers
T1  - Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite
VL  - 14
IS  - 1
SP  - 18
DO  - 10.3390/polym14010018
ER  - 
@article{
author = "Filipović, Vuk and Babić Radić, Marija M. and Vuković, Jovana S. and Vukomanović, Marija and Rubert, Marina and Hofmann, Sandra and Müller, Ralph and Tomić, Simonida Lj.",
year = "2022",
abstract = "New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-
hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component,
nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer,
to be able to tune the structure and the physicochemical and mechanical properties, and a natural
polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied.
The goal was to make a new material with superior properties for applications in the biomedical
field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegrad able PHEMA hydrogel was obtained by crosslinking HEMA by poly(β-amino esters) (PBAE). The
scaffold’s physicochemical and mechanical properties, in vitro degradation, and biological activity
were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin)
hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity,
swelling, porosity, and percent of mass loss during degradation than the samples obtained by poro genation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated
samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss,
and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate,
which was 15–20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of
culture was higher in the composites, although not statistically different. After 28 days, cell metabolic
activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the
scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which
influenced the mechanical behavior, structure, physicochemical properties, and interactions with
biological species.",
publisher = "MDPI",
journal = "Polymers",
title = "Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite",
volume = "14",
number = "1",
pages = "18",
doi = "10.3390/polym14010018"
}
Filipović, V., Babić Radić, M. M., Vuković, J. S., Vukomanović, M., Rubert, M., Hofmann, S., Müller, R.,& Tomić, S. Lj.. (2022). Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite. in Polymers
MDPI., 14(1), 18.
https://doi.org/10.3390/polym14010018
Filipović V, Babić Radić MM, Vuković JS, Vukomanović M, Rubert M, Hofmann S, Müller R, Tomić SL. Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite. in Polymers. 2022;14(1):18.
doi:10.3390/polym14010018 .
Filipović, Vuk, Babić Radić, Marija M., Vuković, Jovana S., Vukomanović, Marija, Rubert, Marina, Hofmann, Sandra, Müller, Ralph, Tomić, Simonida Lj., "Biodegradable Hydrogel Scaffolds Based on 2-Hydroxyethyl Methacrylate, Gelatin, Poly(β-amino esters), and Hydroxyapatite" in Polymers, 14, no. 1 (2022):18,
https://doi.org/10.3390/polym14010018 . .
10
9

Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials

Babić Radić, Marija M.; Filipović, Vuk V.; Vuković, Jovana S.; Vukomanović, Marija; Rubert, Marina; Hofmann, Sandra; Müller, Ralph; Tomić, Simonida Lj.

(Switzerland : Multidisciplinary Digital Publishing Institute (MDPI), 2022)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Filipović, Vuk V.
AU  - Vuković, Jovana S.
AU  - Vukomanović, Marija
AU  - Rubert, Marina
AU  - Hofmann, Sandra
AU  - Müller, Ralph
AU  - Tomić, Simonida Lj.
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5391
AB  - Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a “pattern” to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold’s functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold’s structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08–9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.
PB  - Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - Polymers
T1  - Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials
VL  - 14
IS  - 15
SP  - 3112
DO  - 10.3390/polym14153112
ER  - 
@article{
author = "Babić Radić, Marija M. and Filipović, Vuk V. and Vuković, Jovana S. and Vukomanović, Marija and Rubert, Marina and Hofmann, Sandra and Müller, Ralph and Tomić, Simonida Lj.",
year = "2022",
abstract = "Our goal was to create bioimitated scaffolding materials for biomedical purposes. The guiding idea was that we used an interpenetrating structural hierarchy of natural extracellular matrix as a “pattern” to design hydrogel scaffolds that show favorable properties for tissue regeneration. Polymeric hydrogel scaffolds are made in a simple, environmentally friendly way without additional functionalization. Gelatin and 2-hydroxyethyl methacrylate were selected to prepare interpenetrating polymeric networks and linear alginate chains were added as an interpenetrant to study their influence on the scaffold’s functionalities. Cryogelation and porogenation methods were used to obtain the designed scaffolding biomaterials. The scaffold’s structural, morphological, and mechanical properties, in vitro degradation, and cell viability properties were assessed to study the effects of the preparation method and alginate loading. Apatite as an inorganic agent was incorporated into cryogelated scaffolds to perform an extensive biological assay. Cryogelated scaffolds possess superior functionalities essential for tissue regeneration: fully hydrophilicity, degradability and mechanical features (2.08–9.75 MPa), and an optimal LDH activity. Furthermore, cryogelated scaffolds loaded with apatite showed good cell adhesion capacity, biocompatibility, and non-toxic behavior. All scaffolds performed equally in terms of metabolic activity and osteoconductivity. Cryogelated scaffolds with/without HAp could represent a new advance to promote osteoconductivity and enhance hard tissue repair. The obtained series of scaffolding biomaterials described here can provide a wide range of potential applications in the area of biomedical engineering.",
publisher = "Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "Polymers",
title = "Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials",
volume = "14",
number = "15",
pages = "3112",
doi = "10.3390/polym14153112"
}
Babić Radić, M. M., Filipović, V. V., Vuković, J. S., Vukomanović, M., Rubert, M., Hofmann, S., Müller, R.,& Tomić, S. Lj.. (2022). Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials. in Polymers
Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)., 14(15), 3112.
https://doi.org/10.3390/polym14153112
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Rubert M, Hofmann S, Müller R, Tomić SL. Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials. in Polymers. 2022;14(15):3112.
doi:10.3390/polym14153112 .
Babić Radić, Marija M., Filipović, Vuk V., Vuković, Jovana S., Vukomanović, Marija, Rubert, Marina, Hofmann, Sandra, Müller, Ralph, Tomić, Simonida Lj., "Bioactive Interpenetrating Hydrogel Networks Based on 2-Hydroxyethyl Methacrylate and Gelatin Intertwined with Alginate and Dopped with Apatite as Scaffolding Biomaterials" in Polymers, 14, no. 15 (2022):3112,
https://doi.org/10.3390/polym14153112 . .
7
5

Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials

Babić Radić, Marija M.; Filipović, Vuk; Vukomanović, Marija; Nikodinović Runić, Jasmina; Tomić, Simonida

(MDPI, 2022)

TY  - JOUR
AU  - Babić Radić, Marija M.
AU  - Filipović, Vuk
AU  - Vukomanović, Marija
AU  - Nikodinović Runić, Jasmina
AU  - Tomić, Simonida
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5311
AB  - The design and evaluation of novel 2-hydroxyethyl methacrylate/gelatin/alginate/
graphene oxide hydrogels as innovative scaffolding biomaterials, which concurrently are the suitable
drug delivery carrier, was proposed. The hydrogels were prepared by the adapted porogen leaching
method; this is also the first time this method has been used to incorporate nanocolloidal graphene
oxide through the hydrogel and simultaneously form porous structures. The effects of a material’s
composition on its chemical, morphological, mechanical, and swelling properties, as well as on
cell viability and in vitro degradation, were assessed using Fourier transform infrared spectroscopy
(FTIR), scanning electron microscopy (SEM), measurements of Young’s modulus, gravimetric method
and MTT test, respectively. The engineered hydrogels show good swelling capacity, fully hydrophilic
surfaces, tunable porosity (from 56 to 76%) and mechanical properties (from 1.69 to 4.78 MPa),
curcumin entrapment efficiency above 99% and excellent curcumin release performances. In vitro
cytotoxicity on healthy human fibroblast (MRC5 cells) by MTT test reveal that the materials are
nontoxic and biocompatible, proposing novel hydrogels for in vivo clinical evaluation to optimize
tissue regeneration treatments by coupling the hydrogels with cells and different active agents to
create material/biofactor hybrids with new levels of biofunctionality.
PB  - MDPI
T2  - Gels
T1  - Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials
VL  - 8
IS  - 22
SP  - 2
EP  - 14
DO  - 10.3390/gels8010022
ER  - 
@article{
author = "Babić Radić, Marija M. and Filipović, Vuk and Vukomanović, Marija and Nikodinović Runić, Jasmina and Tomić, Simonida",
year = "2022",
abstract = "The design and evaluation of novel 2-hydroxyethyl methacrylate/gelatin/alginate/
graphene oxide hydrogels as innovative scaffolding biomaterials, which concurrently are the suitable
drug delivery carrier, was proposed. The hydrogels were prepared by the adapted porogen leaching
method; this is also the first time this method has been used to incorporate nanocolloidal graphene
oxide through the hydrogel and simultaneously form porous structures. The effects of a material’s
composition on its chemical, morphological, mechanical, and swelling properties, as well as on
cell viability and in vitro degradation, were assessed using Fourier transform infrared spectroscopy
(FTIR), scanning electron microscopy (SEM), measurements of Young’s modulus, gravimetric method
and MTT test, respectively. The engineered hydrogels show good swelling capacity, fully hydrophilic
surfaces, tunable porosity (from 56 to 76%) and mechanical properties (from 1.69 to 4.78 MPa),
curcumin entrapment efficiency above 99% and excellent curcumin release performances. In vitro
cytotoxicity on healthy human fibroblast (MRC5 cells) by MTT test reveal that the materials are
nontoxic and biocompatible, proposing novel hydrogels for in vivo clinical evaluation to optimize
tissue regeneration treatments by coupling the hydrogels with cells and different active agents to
create material/biofactor hybrids with new levels of biofunctionality.",
publisher = "MDPI",
journal = "Gels",
title = "Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials",
volume = "8",
number = "22",
pages = "2-14",
doi = "10.3390/gels8010022"
}
Babić Radić, M. M., Filipović, V., Vukomanović, M., Nikodinović Runić, J.,& Tomić, S.. (2022). Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials. in Gels
MDPI., 8(22), 2-14.
https://doi.org/10.3390/gels8010022
Babić Radić MM, Filipović V, Vukomanović M, Nikodinović Runić J, Tomić S. Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials. in Gels. 2022;8(22):2-14.
doi:10.3390/gels8010022 .
Babić Radić, Marija M., Filipović, Vuk, Vukomanović, Marija, Nikodinović Runić, Jasmina, Tomić, Simonida, "Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials" in Gels, 8, no. 22 (2022):2-14,
https://doi.org/10.3390/gels8010022 . .
15
15