Radmilović, Velimir R.

Link to this page

Authority KeyName Variants
orcid::0000-0003-3326-4320
  • Radmilović, Velimir R. (22)
  • Radmilović, Velimir (1)
Projects
Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis New approach in designing materials for energy conversion and energy storage systems
Serbian Academy of Sciences and Arts - F-141 Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) AdCatFC - Advanced Catalysts for Low Temperature Fuel Cells: From Model System to Sustainable Catalysts
Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy - DE-AC02-05CH11231 Reinforcing of Nanotechnology and Functional Materials Centre
COST Action - COST-STSM-MP1407-35830 Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
Nanotechnology and Functional Materials Center Serbian Academy of Sciences and Arts (Contract No. F141)
Struktura, termodinamičke i elektrohemijske osobine materijala za konverziju energije i nove tehnologije Elektrohemijske karakteristike oksidnih i polimernih prevlaka na modifikovanim površinama metala
U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering - DE-AC02-05CH11231

Author's Bibliography

Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media

Obradović, Maja D.; Radmilović, Vuk V.; Radmilović, Velimir R.; Gojković, Snežana Lj.

(Lausanne, Switzerland : International Society of Electrochemistry, 2023)

TY  - CONF
AU  - Obradović, Maja D.
AU  - Radmilović, Vuk V.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6623
AB  - The necessity of replacement of traditional energy sources with renewable and green alternatives has initiated vast research of direct alcohol fuel cells (DAFC). Ethanol is non-toxic and its crossover through a membrane is lower than methanol due to its larger molecule size. However, the splitting of C–C bond in ethanol is energetically difficult and much effort in electrocatalysts’ improvement is still needed to take the advantage of the high mass energy density of ethanol [1,2]. Electrochemical oxidation of alcohols in requires a noble metal, Pt or Pd, to adsorb the molecule, but also some other oxophilic metal to facilitate further reaction of the adsorbed intermediates Their promoted oxidative desorption can be achieved by introducing oxygen-containing species at the surface, which may also modify the electronic structure of the noble metal centers and thus weaken the strong adsorbate–noble metal bond. Copper is inactive for alcohol oxidation but its addition to palladium enhances the ethanol oxidation reaction (EOR) rate [3,4]. Various forms of Pd-Cu electrocatalysts exhibited improved mass activity for the EOR and oxygen reduction reaction (ORR), but the effect of Cu addition on the specific activity is not so clear. Therefore, in the present work, specific activity for EOR and ORR of synthesized Pd-Cu nanoparticles [5] supported on high area carbon was examined. As reference catalysts, synthesized Pd/C and commercial Pt/C were used.
For the electrochemical characterization the nanocatalysts were applied on a glassy carbon (GC) substrate in the form of a thin–film. Pd/C and Pt/C were characterized by cyclic voltammetry, Cuupd, and COads stripping in an acid and an alkaline solution. Electrochemically active surface area (ECSA) of the Pd-Cu nanocatalyst was calculated from the charge of desorption of CO in the alkaline solution. Cyclic voltammetry showed that in the presence of Cu atoms on the Pd surface, the onsets of CO desorption were negatively shifted. This indicates that Cu atoms provide oxygen-containing species at adjacent Pd sites at a lower potential than that achieved on pure metals. Nanocatalyst’s activity for EOR was investigated under potentiodynamic and potentiostatic conditions. Adding of Cu to Pd enhances the intrinsic activity of Pd for the EOR, with the greatest effect achieved for one Cu atom to 2-4 Pd atoms. Bimetallic catalysts surpassed Pd/C by mass activity, as well. The activity of Pt/C for EOR was higher compared with Pd-based catalysts, both as specific and mass activity, but with a significant decline over 30 min potentiostatic stability test. Therefore, the bifunctional and electronic effect contributed to the good performance of the nanoalloy for EOR. For ORR, Pd-Cu/C showed a negative half-wave potential shift compared to Pd/C and Pt/C of 11 and 30 mV, respectively. However, it was found that the specific ORR activities of Pd-Cu/C and Pd/C are the same at low current densities, i.e. up to a potential of 0.90 V, but higher than the specific activity of Pt/C by a factor of 5.
PB  - Lausanne, Switzerland : International Society of Electrochemistry
C3  - 74th Annual Meeting of the International Society of Electrochemistry, "Bridging Scientific Disciplines to Address the World’s Challenges," Program, 3 - 8 September 2023 Lyon, France
T1  - Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media
SP  - S06-P-079
UR  - https://hdl.handle.net/21.15107/rcub_cer_6623
ER  - 
@conference{
author = "Obradović, Maja D. and Radmilović, Vuk V. and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2023",
abstract = "The necessity of replacement of traditional energy sources with renewable and green alternatives has initiated vast research of direct alcohol fuel cells (DAFC). Ethanol is non-toxic and its crossover through a membrane is lower than methanol due to its larger molecule size. However, the splitting of C–C bond in ethanol is energetically difficult and much effort in electrocatalysts’ improvement is still needed to take the advantage of the high mass energy density of ethanol [1,2]. Electrochemical oxidation of alcohols in requires a noble metal, Pt or Pd, to adsorb the molecule, but also some other oxophilic metal to facilitate further reaction of the adsorbed intermediates Their promoted oxidative desorption can be achieved by introducing oxygen-containing species at the surface, which may also modify the electronic structure of the noble metal centers and thus weaken the strong adsorbate–noble metal bond. Copper is inactive for alcohol oxidation but its addition to palladium enhances the ethanol oxidation reaction (EOR) rate [3,4]. Various forms of Pd-Cu electrocatalysts exhibited improved mass activity for the EOR and oxygen reduction reaction (ORR), but the effect of Cu addition on the specific activity is not so clear. Therefore, in the present work, specific activity for EOR and ORR of synthesized Pd-Cu nanoparticles [5] supported on high area carbon was examined. As reference catalysts, synthesized Pd/C and commercial Pt/C were used.
For the electrochemical characterization the nanocatalysts were applied on a glassy carbon (GC) substrate in the form of a thin–film. Pd/C and Pt/C were characterized by cyclic voltammetry, Cuupd, and COads stripping in an acid and an alkaline solution. Electrochemically active surface area (ECSA) of the Pd-Cu nanocatalyst was calculated from the charge of desorption of CO in the alkaline solution. Cyclic voltammetry showed that in the presence of Cu atoms on the Pd surface, the onsets of CO desorption were negatively shifted. This indicates that Cu atoms provide oxygen-containing species at adjacent Pd sites at a lower potential than that achieved on pure metals. Nanocatalyst’s activity for EOR was investigated under potentiodynamic and potentiostatic conditions. Adding of Cu to Pd enhances the intrinsic activity of Pd for the EOR, with the greatest effect achieved for one Cu atom to 2-4 Pd atoms. Bimetallic catalysts surpassed Pd/C by mass activity, as well. The activity of Pt/C for EOR was higher compared with Pd-based catalysts, both as specific and mass activity, but with a significant decline over 30 min potentiostatic stability test. Therefore, the bifunctional and electronic effect contributed to the good performance of the nanoalloy for EOR. For ORR, Pd-Cu/C showed a negative half-wave potential shift compared to Pd/C and Pt/C of 11 and 30 mV, respectively. However, it was found that the specific ORR activities of Pd-Cu/C and Pd/C are the same at low current densities, i.e. up to a potential of 0.90 V, but higher than the specific activity of Pt/C by a factor of 5.",
publisher = "Lausanne, Switzerland : International Society of Electrochemistry",
journal = "74th Annual Meeting of the International Society of Electrochemistry, "Bridging Scientific Disciplines to Address the World’s Challenges," Program, 3 - 8 September 2023 Lyon, France",
title = "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media",
pages = "S06-P-079",
url = "https://hdl.handle.net/21.15107/rcub_cer_6623"
}
Obradović, M. D., Radmilović, V. V., Radmilović, V. R.,& Gojković, S. Lj.. (2023). Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media. in 74th Annual Meeting of the International Society of Electrochemistry, "Bridging Scientific Disciplines to Address the World’s Challenges," Program, 3 - 8 September 2023 Lyon, France
Lausanne, Switzerland : International Society of Electrochemistry., S06-P-079.
https://hdl.handle.net/21.15107/rcub_cer_6623
Obradović MD, Radmilović VV, Radmilović VR, Gojković SL. Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media. in 74th Annual Meeting of the International Society of Electrochemistry, "Bridging Scientific Disciplines to Address the World’s Challenges," Program, 3 - 8 September 2023 Lyon, France. 2023;:S06-P-079.
https://hdl.handle.net/21.15107/rcub_cer_6623 .
Obradović, Maja D., Radmilović, Vuk V., Radmilović, Velimir R., Gojković, Snežana Lj., "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media" in 74th Annual Meeting of the International Society of Electrochemistry, "Bridging Scientific Disciplines to Address the World’s Challenges," Program, 3 - 8 September 2023 Lyon, France (2023):S06-P-079,
https://hdl.handle.net/21.15107/rcub_cer_6623 .

Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium

Obradović, Maja; Lačnjevac, Uroš; Radmilović, Vuk; Gavrilović-Wohlmuther, Aleksandra; Kovač, Janez; Rogan, Jelena; Radmilović, Velimir; Gojković, Snežana

(Elsevier, 2023)

TY  - JOUR
AU  - Obradović, Maja
AU  - Lačnjevac, Uroš
AU  - Radmilović, Vuk
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Kovač, Janez
AU  - Rogan, Jelena
AU  - Radmilović, Velimir
AU  - Gojković, Snežana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7178
AB  - Two types of Cu-modified Pd catalysts supported on high area carbon were prepared: Pd nanoparticles modified with a sub-monolayer of underpotentially deposited Cu (Cu@Pd/C) and Pd-Cu alloy nanoparticles (Pd-Cu/C), and examined for the ethanol oxidation reaction (EOR) in alkaline solution. The catalysts were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy, as well as cyclic voltammetry. As reference catalysts, Pd/C and Pt/C were used. The electrochemically active surface area of all samples was determined from COads and Cuupd desorption and Pd oxide reduction, and used to assess their intrinsic activity for EOR. Intimate contact of Pd with Cu atoms enhanced its activity, regardless of the type of bimetal catalyst. The atomic Pd:Cu ratio between 2:1 and 4:1 appears to be optimal for high activity. The most active catalyst under the potentiodynamic conditions was Cu@Pd/C with θ(Cu) = 0.21,although Pd-Cu/C was superior during the potentiostatic test. All bimetallic catalysts surpassed Pd/C in mass activity. The EOR activity of Pt/C was higher compared to Pd-based catalysts at low potentials, both in terms of specific and mass activity, but with a significant decline over a 30-min potentiostatic stability test.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium
VL  - 944
SP  - 117673
DO  - 10.1016/j.jelechem.2023.117673
ER  - 
@article{
author = "Obradović, Maja and Lačnjevac, Uroš and Radmilović, Vuk and Gavrilović-Wohlmuther, Aleksandra and Kovač, Janez and Rogan, Jelena and Radmilović, Velimir and Gojković, Snežana",
year = "2023",
abstract = "Two types of Cu-modified Pd catalysts supported on high area carbon were prepared: Pd nanoparticles modified with a sub-monolayer of underpotentially deposited Cu (Cu@Pd/C) and Pd-Cu alloy nanoparticles (Pd-Cu/C), and examined for the ethanol oxidation reaction (EOR) in alkaline solution. The catalysts were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy, as well as cyclic voltammetry. As reference catalysts, Pd/C and Pt/C were used. The electrochemically active surface area of all samples was determined from COads and Cuupd desorption and Pd oxide reduction, and used to assess their intrinsic activity for EOR. Intimate contact of Pd with Cu atoms enhanced its activity, regardless of the type of bimetal catalyst. The atomic Pd:Cu ratio between 2:1 and 4:1 appears to be optimal for high activity. The most active catalyst under the potentiodynamic conditions was Cu@Pd/C with θ(Cu) = 0.21,although Pd-Cu/C was superior during the potentiostatic test. All bimetallic catalysts surpassed Pd/C in mass activity. The EOR activity of Pt/C was higher compared to Pd-based catalysts at low potentials, both in terms of specific and mass activity, but with a significant decline over a 30-min potentiostatic stability test.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium",
volume = "944",
pages = "117673",
doi = "10.1016/j.jelechem.2023.117673"
}
Obradović, M., Lačnjevac, U., Radmilović, V., Gavrilović-Wohlmuther, A., Kovač, J., Rogan, J., Radmilović, V.,& Gojković, S.. (2023). Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium. in Journal of Electroanalytical Chemistry
Elsevier., 944, 117673.
https://doi.org/10.1016/j.jelechem.2023.117673
Obradović M, Lačnjevac U, Radmilović V, Gavrilović-Wohlmuther A, Kovač J, Rogan J, Radmilović V, Gojković S. Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium. in Journal of Electroanalytical Chemistry. 2023;944:117673.
doi:10.1016/j.jelechem.2023.117673 .
Obradović, Maja, Lačnjevac, Uroš, Radmilović, Vuk, Gavrilović-Wohlmuther, Aleksandra, Kovač, Janez, Rogan, Jelena, Radmilović, Velimir, Gojković, Snežana, "Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium" in Journal of Electroanalytical Chemistry, 944 (2023):117673,
https://doi.org/10.1016/j.jelechem.2023.117673 . .
2
2

Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media"

Obradović, Maja D.; Radmilović, Vuk V.; Radmilović, Velimir R.; Gojković, Snežana Lj.

(2023)

TY  - CONF
AU  - Obradović, Maja D.
AU  - Radmilović, Vuk V.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6624
AB  - The necessity of replacement of traditional energy sources with renewable and green alternatives has initiated vast research of direct alcohol fuel cells (DAFC). Ethanol is non-toxic and its crossover through a membrane is lower than methanol due to its larger molecule size. However, the splitting of C–C bond in ethanol is energetically difficult and much effort in electrocatalysts’ improvement is still needed to take the advantage of the high mass energy density of ethanol [1,2]. Electrochemical oxidation of alcohols in requires a noble metal, Pt or Pd, to adsorb the molecule, but also some other oxophilic metal to facilitate further reaction of the adsorbed intermediates Their promoted oxidative desorption can be achieved by introducing oxygen-containing species at the surface, which may also modify the electronic structure of the noble metal centers and thus weaken the strong adsorbate–noble metal bond. Copper is inactive for alcohol oxidation but its addition to palladium enhances the ethanol oxidation reaction (EOR) rate [3,4]. Various forms of Pd-Cu electrocatalysts exhibited improved mass activity for the EOR and oxygen reduction reaction (ORR), but the effect of Cu addition on the specific activity is not so clear. Therefore, in the present work, specific activity for EOR and ORR of synthesized Pd-Cu nanoparticles [5] supported on high area carbon was examined. As reference catalysts, synthesized Pd/C and commercial Pt/C were used.For the electrochemical characterization the nanocatalysts were applied on a glassy carbon (GC) substrate in the form of a thin–film. Pd/C and Pt/C were characterized by cyclic voltammetry, Cuupd, and COads stripping in an acid and an alkaline solution. Electrochemically active surface area (ECSA) of the Pd-Cu nanocatalyst was calculated from the charge of desorption of CO in the alkaline solution. Cyclic voltammetry showed that in the presence of Cu atoms on the Pd surface, the onsets of CO desorption were negatively shifted. This indicates that Cu atoms provide oxygen-containing species at adjacent Pd sites at a lower potential than that achieved on pure metals. Nanocatalyst’s activity for EOR was investigated under potentiodynamic and potentiostatic conditions. Adding of Cu to Pd enhances the intrinsic activity of Pd for the EOR, with the greatest effect achieved for one Cu atom to 2-4 Pd atoms. Bimetallic catalysts surpassed Pd/C by mass activity, as well. The activity of Pt/C for EOR was higher compared with Pd-based catalysts, both as specific and mass activity, but with a significant decline over 30 min potentiostatic stability test. Therefore, the bifunctional and electronic effect contributed to the good performance of the nanoalloy for EOR. For ORR, Pd-Cu/C showed a negative half-wave potential shift compared to Pd/C and Pt/C of 11 and 30 mV, respectively. However, it was found that the specific ORR activities of Pd-Cu/C and Pd/C are the same at low current densities, i.e. up to a potential of 0.90 V, but higher than the specific activity of Pt/C by a factor of 5.
T1  - Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media"
UR  - https://hdl.handle.net/21.15107/rcub_cer_6624
ER  - 
@conference{
author = "Obradović, Maja D. and Radmilović, Vuk V. and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2023",
abstract = "The necessity of replacement of traditional energy sources with renewable and green alternatives has initiated vast research of direct alcohol fuel cells (DAFC). Ethanol is non-toxic and its crossover through a membrane is lower than methanol due to its larger molecule size. However, the splitting of C–C bond in ethanol is energetically difficult and much effort in electrocatalysts’ improvement is still needed to take the advantage of the high mass energy density of ethanol [1,2]. Electrochemical oxidation of alcohols in requires a noble metal, Pt or Pd, to adsorb the molecule, but also some other oxophilic metal to facilitate further reaction of the adsorbed intermediates Their promoted oxidative desorption can be achieved by introducing oxygen-containing species at the surface, which may also modify the electronic structure of the noble metal centers and thus weaken the strong adsorbate–noble metal bond. Copper is inactive for alcohol oxidation but its addition to palladium enhances the ethanol oxidation reaction (EOR) rate [3,4]. Various forms of Pd-Cu electrocatalysts exhibited improved mass activity for the EOR and oxygen reduction reaction (ORR), but the effect of Cu addition on the specific activity is not so clear. Therefore, in the present work, specific activity for EOR and ORR of synthesized Pd-Cu nanoparticles [5] supported on high area carbon was examined. As reference catalysts, synthesized Pd/C and commercial Pt/C were used.For the electrochemical characterization the nanocatalysts were applied on a glassy carbon (GC) substrate in the form of a thin–film. Pd/C and Pt/C were characterized by cyclic voltammetry, Cuupd, and COads stripping in an acid and an alkaline solution. Electrochemically active surface area (ECSA) of the Pd-Cu nanocatalyst was calculated from the charge of desorption of CO in the alkaline solution. Cyclic voltammetry showed that in the presence of Cu atoms on the Pd surface, the onsets of CO desorption were negatively shifted. This indicates that Cu atoms provide oxygen-containing species at adjacent Pd sites at a lower potential than that achieved on pure metals. Nanocatalyst’s activity for EOR was investigated under potentiodynamic and potentiostatic conditions. Adding of Cu to Pd enhances the intrinsic activity of Pd for the EOR, with the greatest effect achieved for one Cu atom to 2-4 Pd atoms. Bimetallic catalysts surpassed Pd/C by mass activity, as well. The activity of Pt/C for EOR was higher compared with Pd-based catalysts, both as specific and mass activity, but with a significant decline over 30 min potentiostatic stability test. Therefore, the bifunctional and electronic effect contributed to the good performance of the nanoalloy for EOR. For ORR, Pd-Cu/C showed a negative half-wave potential shift compared to Pd/C and Pt/C of 11 and 30 mV, respectively. However, it was found that the specific ORR activities of Pd-Cu/C and Pd/C are the same at low current densities, i.e. up to a potential of 0.90 V, but higher than the specific activity of Pt/C by a factor of 5.",
title = "Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media"",
url = "https://hdl.handle.net/21.15107/rcub_cer_6624"
}
Obradović, M. D., Radmilović, V. V., Radmilović, V. R.,& Gojković, S. Lj.. (2023). Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media". .
https://hdl.handle.net/21.15107/rcub_cer_6624
Obradović MD, Radmilović VV, Radmilović VR, Gojković SL. Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media". 2023;.
https://hdl.handle.net/21.15107/rcub_cer_6624 .
Obradović, Maja D., Radmilović, Vuk V., Radmilović, Velimir R., Gojković, Snežana Lj., "Poster presentation: "Palladium-copper bimetallic nanocatalyst for electrochemical ethanol oxidation and oxygen reduction in alkaline media"" (2023),
https://hdl.handle.net/21.15107/rcub_cer_6624 .

Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution

Obradović, Maja; Rogan, Jelena; Lačnjevac, Uroš; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Vuk V.; Radmilović, Velimir R.; Gojković, Snežana

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Obradović, Maja
AU  - Rogan, Jelena
AU  - Lačnjevac, Uroš
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Vuk V.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana
PY  - 2022
UR  - http://elmina.tmf.bg.ac.rs
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5942
AB  - Nanocatalysts Pd/C and Pd-Cu/C were synthesized by a borohydride reduction method and 
characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission 
electron microscopy (TEM). In addition, the Pd/C catalyst was decorated by Cuupd in an acid solution with various surface coverages (up to 0.5). The catalysts were electrochemically characterized by cyclic voltammetry (CV) and COads stripping in acid and alkaline solutions.  The electrochemically active surface area (ECSA) was estimated from the charge under the CO desorption peak in the alkaline solution and used for determining specific and mass activity for the EOR.
PB  - Belgrade : Serbian Academy of Sciences and Arts
PB  - Belgrade : Faculty of Technology and Metallurgy, University of Belgrade
C3  - Program and Book of Abstracts - Second International Conference on Electron Microscopy of Nanostructures, ELMINA 2022, August 22nd-26th, 2022, Belgrade, Serbia
T1  - Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution
SP  - 182
EP  - 183
UR  - https://hdl.handle.net/21.15107/rcub_cer_5942
ER  - 
@conference{
author = "Obradović, Maja and Rogan, Jelena and Lačnjevac, Uroš and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Vuk V. and Radmilović, Velimir R. and Gojković, Snežana",
year = "2022",
abstract = "Nanocatalysts Pd/C and Pd-Cu/C were synthesized by a borohydride reduction method and 
characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission 
electron microscopy (TEM). In addition, the Pd/C catalyst was decorated by Cuupd in an acid solution with various surface coverages (up to 0.5). The catalysts were electrochemically characterized by cyclic voltammetry (CV) and COads stripping in acid and alkaline solutions.  The electrochemically active surface area (ECSA) was estimated from the charge under the CO desorption peak in the alkaline solution and used for determining specific and mass activity for the EOR.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts, Belgrade : Faculty of Technology and Metallurgy, University of Belgrade",
journal = "Program and Book of Abstracts - Second International Conference on Electron Microscopy of Nanostructures, ELMINA 2022, August 22nd-26th, 2022, Belgrade, Serbia",
title = "Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution",
pages = "182-183",
url = "https://hdl.handle.net/21.15107/rcub_cer_5942"
}
Obradović, M., Rogan, J., Lačnjevac, U., Gavrilović-Wohlmuther, A., Radmilović, V. V., Radmilović, V. R.,& Gojković, S.. (2022). Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution. in Program and Book of Abstracts - Second International Conference on Electron Microscopy of Nanostructures, ELMINA 2022, August 22nd-26th, 2022, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 182-183.
https://hdl.handle.net/21.15107/rcub_cer_5942
Obradović M, Rogan J, Lačnjevac U, Gavrilović-Wohlmuther A, Radmilović VV, Radmilović VR, Gojković S. Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution. in Program and Book of Abstracts - Second International Conference on Electron Microscopy of Nanostructures, ELMINA 2022, August 22nd-26th, 2022, Belgrade, Serbia. 2022;:182-183.
https://hdl.handle.net/21.15107/rcub_cer_5942 .
Obradović, Maja, Rogan, Jelena, Lačnjevac, Uroš, Gavrilović-Wohlmuther, Aleksandra, Radmilović, Vuk V., Radmilović, Velimir R., Gojković, Snežana, "Cuupd@Pd/C and Pd-Cu/C Nanocatalysts for Electrochemical Ethanol Oxidation in Alkaline Solution" in Program and Book of Abstracts - Second International Conference on Electron Microscopy of Nanostructures, ELMINA 2022, August 22nd-26th, 2022, Belgrade, Serbia (2022):182-183,
https://hdl.handle.net/21.15107/rcub_cer_5942 .

Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Zabinski, Piotr; Elezović, Nevenka R.; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Elsevier, 2019)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Zabinski, Piotr
AU  - Elezović, Nevenka R.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2490
AB  - Low loading PtAu nanoparticles supported on high area carbon were synthesized by water-in-oil microemulsion method and examined for formic acid and methanol oxidation. Prepared catalyst powder was characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). These techniques revealed that the catalyst contains rather agglomerated quasi-spherical particles, similar to 4 nm diameter, composed of a solid solution of Pt and Au with only similar to 4 at% of Au. In spite of such low Au content, both onset and peak potentials for CO oxidation are shifted some 150 mV to more positive values in comparison to Pt synthesized in the same manner due to stronger binding of CO as a result of notable electronic effect. It is important that this small quantity of Au also significantly influences oxidation of formic acid promoting direct path and suppressing indirect path in formic acid oxidation in a degree as expected by a much larger quantity of Au. Such improvement could be due exclusively by ensemble effect of high number of small Pt domains which formation could be possible only by very fine dispersion of such low Au quantity. High number of small Pt domains is corroborated by lower activity for methanol oxidation in comparison to Pt catalyst synthesized by the same procedure. These results emphasize the importance of the Au dispersion on the surface of Pt over its quantity in PtAu catalyst with regards to both, the ensemble and the electronic effects.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method
VL  - 243
SP  - 585
EP  - 593
DO  - 10.1016/j.apcatb.2018.10.064
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Zabinski, Piotr and Elezović, Nevenka R. and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2019",
abstract = "Low loading PtAu nanoparticles supported on high area carbon were synthesized by water-in-oil microemulsion method and examined for formic acid and methanol oxidation. Prepared catalyst powder was characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). These techniques revealed that the catalyst contains rather agglomerated quasi-spherical particles, similar to 4 nm diameter, composed of a solid solution of Pt and Au with only similar to 4 at% of Au. In spite of such low Au content, both onset and peak potentials for CO oxidation are shifted some 150 mV to more positive values in comparison to Pt synthesized in the same manner due to stronger binding of CO as a result of notable electronic effect. It is important that this small quantity of Au also significantly influences oxidation of formic acid promoting direct path and suppressing indirect path in formic acid oxidation in a degree as expected by a much larger quantity of Au. Such improvement could be due exclusively by ensemble effect of high number of small Pt domains which formation could be possible only by very fine dispersion of such low Au quantity. High number of small Pt domains is corroborated by lower activity for methanol oxidation in comparison to Pt catalyst synthesized by the same procedure. These results emphasize the importance of the Au dispersion on the surface of Pt over its quantity in PtAu catalyst with regards to both, the ensemble and the electronic effects.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method",
volume = "243",
pages = "585-593",
doi = "10.1016/j.apcatb.2018.10.064"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Zabinski, P., Elezović, N. R., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2019). Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. in Applied Catalysis B-Environmental
Elsevier., 243, 585-593.
https://doi.org/10.1016/j.apcatb.2018.10.064
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Zabinski P, Elezović NR, Radmilović VR, Gojković SL, Jovanović VM. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. in Applied Catalysis B-Environmental. 2019;243:585-593.
doi:10.1016/j.apcatb.2018.10.064 .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Zabinski, Piotr, Elezović, Nevenka R., Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method" in Applied Catalysis B-Environmental, 243 (2019):585-593,
https://doi.org/10.1016/j.apcatb.2018.10.064 . .
40
22
39

Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Zabinski, Piotr; Elezović, Nevenka R.; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Amsterdam : Elsevier Science Bv, 2019)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Zabinski, Piotr
AU  - Elezović, Nevenka R.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2897
AB  - Low loading PtAu nanoparticles supported on high area carbon were synthesized by water-in-oil microemulsion method and examined for formic acid and methanol oxidation. Prepared catalyst powder was characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). These techniques revealed that the catalyst contains rather agglomerated quasi-spherical particles, similar to 4 nm diameter, composed of a solid solution of Pt and Au with only similar to 4 at% of Au. In spite of such low Au content, both onset and peak potentials for CO oxidation are shifted some 150 mV to more positive values in comparison to Pt synthesized in the same manner due to stronger binding of CO as a result of notable electronic effect. It is important that this small quantity of Au also significantly influences oxidation of formic acid promoting direct path and suppressing indirect path in formic acid oxidation in a degree as expected by a much larger quantity of Au. Such improvement could be due exclusively by ensemble effect of high number of small Pt domains which formation could be possible only by very fine dispersion of such low Au quantity. High number of small Pt domains is corroborated by lower activity for methanol oxidation in comparison to Pt catalyst synthesized by the same procedure. These results emphasize the importance of the Au dispersion on the surface of Pt over its quantity in PtAu catalyst with regards to both, the ensemble and the electronic effects.
PB  - Amsterdam : Elsevier Science Bv
T2  - Applied Catalysis B-Environmental
T1  - Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method
VL  - 243
SP  - 585
EP  - 593
DO  - 10.1016/j.apcatb.2018.10.064
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Zabinski, Piotr and Elezović, Nevenka R. and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2019",
abstract = "Low loading PtAu nanoparticles supported on high area carbon were synthesized by water-in-oil microemulsion method and examined for formic acid and methanol oxidation. Prepared catalyst powder was characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). These techniques revealed that the catalyst contains rather agglomerated quasi-spherical particles, similar to 4 nm diameter, composed of a solid solution of Pt and Au with only similar to 4 at% of Au. In spite of such low Au content, both onset and peak potentials for CO oxidation are shifted some 150 mV to more positive values in comparison to Pt synthesized in the same manner due to stronger binding of CO as a result of notable electronic effect. It is important that this small quantity of Au also significantly influences oxidation of formic acid promoting direct path and suppressing indirect path in formic acid oxidation in a degree as expected by a much larger quantity of Au. Such improvement could be due exclusively by ensemble effect of high number of small Pt domains which formation could be possible only by very fine dispersion of such low Au quantity. High number of small Pt domains is corroborated by lower activity for methanol oxidation in comparison to Pt catalyst synthesized by the same procedure. These results emphasize the importance of the Au dispersion on the surface of Pt over its quantity in PtAu catalyst with regards to both, the ensemble and the electronic effects.",
publisher = "Amsterdam : Elsevier Science Bv",
journal = "Applied Catalysis B-Environmental",
title = "Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method",
volume = "243",
pages = "585-593",
doi = "10.1016/j.apcatb.2018.10.064"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Zabinski, P., Elezović, N. R., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2019). Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. in Applied Catalysis B-Environmental
Amsterdam : Elsevier Science Bv., 243, 585-593.
https://doi.org/10.1016/j.apcatb.2018.10.064
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Zabinski P, Elezović NR, Radmilović VR, Gojković SL, Jovanović VM. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. in Applied Catalysis B-Environmental. 2019;243:585-593.
doi:10.1016/j.apcatb.2018.10.064 .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Zabinski, Piotr, Elezović, Nevenka R., Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method" in Applied Catalysis B-Environmental, 243 (2019):585-593,
https://doi.org/10.1016/j.apcatb.2018.10.064 . .
40
22
39

PtAu catalyst with enhanced activity for formic acid oxidation

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Rogan, Jelena R.; Radmilović, Velimir R.; Jovanović, Vladislava M.

(Belgrade, Serbia : Engineering Society for Corrosion, 2018)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Rogan, Jelena R.
AU  - Radmilović, Velimir R.
AU  - Jovanović, Vladislava M.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2282
AB  - PtAu systems are recognized as good catalysts for the oxidation of formic acid electrooxidation, which is investigated as a possible anodic reaction in low-temperature fuel cells. In this research, bimetallic PtAu nanoparticles, supported on high area carbon Vulcan XC-72R, were synthesized by water in oil microemulsion method. The precursor reduction process took place in a single microemulsion, simultaneously, in the presence of 35% of HCl in the water phase, as a capping agent. Electrochemical behavior of the PtAu/C catalyst was investigated at as prepared electrodes by cyclic voltammetry in 0.5M H2SO4 as a supporting electrolyte, and also in the oxidation of adsorbed CO. The results were compared to the Pt/C catalyst prepared by the same synthesis procedure. PtAu/C catalyst powder was also characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Average particle diameter, of 2nm, was calculated from XRD data, which is close to the value of 2.82 nm obtained from TEM images. Compared to identically synthesized Pt nanoparticles, the bimetallic ones are significantly smaller. EDS maps of PtAu/C sample confirm the presence of both elements, and indicate a very fine distribution of Au in the sample. Elemental composition of about 20% Au and 80% Pt was also determined from these maps. Prepared catalyst was tested for formic acid electro-oxidation in terms of its activity and stability over the long term cycling. The voltammograms recorded indicate the change of reaction mechanism and better utilization of the catalyst surface in comparison to Pt/C.
AB  - PtAu sistemi se smatraju veoma dobrim katalizatorima za elektrooksidaciju mravlje kiseline, kao moguće anodne reakcije u niskotemperaturnim gorivnim galvanskim spregovima. U ovom radu bimetalne PtAu nanočestice sintetizovane su mikromulzionim postupkom, i u toku sinteze nanete na ugljenični nosač Vulcan XC-72R. Procesi redukcije prekursora odigravaju se simultano, unutar vodene faze iste mikroemulzije, u prisustvu 35% HCl. Elektrohemijske karakteristike katalizatora ispitivane su cikličnom voltametrijomv na 'as prepared' elektrodama u 0.5M H2SO4 kao osnovnom elektrolitu, kao i prilikom oksidacije adsorbovanog CO. Rezultati su upoređeni sa Pt/C katalizatorom sintetizovanim istim postupkom i pod istovetnim uslovima. Pripremljeni PtAu/C prah okarakterisan je takođe difrakcijom X-zraka, transmisionom elektronskom mikroskopijom i energetski disperzionom spektroskoijom. Veličina čestice određena analizom difraktograma X-zraka iznosi 2nm, što je blisko vrednosti dobijenoj analizom TEM snimaka od 2.82 nm. U poređenju sa Pt nanočesticama sintetizovanim na isti način, bimetalne nanočestice su znatno manjeg prečnika. Mape uzorka PtAu/C dobijene energetski disperzionom spektroskopijom potvrđuju prisustvo oba elementa i pokazuju veoma finu distribuciju Au u uzorku. Analizo mapa utvrđeno je i da je katalizator sastava 20% Au i 80% Pt. Konačno, ispitane su aktivnost i stabilnost bimetalnog katalizatora za oksidaciju mravlje kiseline. Snimljeni voltamogrami ukazuju na promenu reakcionog mehanizma i bolje iskorišćenje površine katalizatora u poređenju ra Pt/C katalizatorom sintetizovanim istim postupkom.
PB  - Belgrade, Serbia : Engineering Society for Corrosion
T2  - Zaštita materijala
T1  - PtAu catalyst with enhanced activity for formic acid oxidation
T1  - PtAu katalizator sa poboljšanom aktivnošću za reakciju oksidacije mravlje kiseline
VL  - 59
IS  - 2
SP  - 159
EP  - 166
DO  - 10.5937/ZasMat1802159K
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Rogan, Jelena R. and Radmilović, Velimir R. and Jovanović, Vladislava M.",
year = "2018",
abstract = "PtAu systems are recognized as good catalysts for the oxidation of formic acid electrooxidation, which is investigated as a possible anodic reaction in low-temperature fuel cells. In this research, bimetallic PtAu nanoparticles, supported on high area carbon Vulcan XC-72R, were synthesized by water in oil microemulsion method. The precursor reduction process took place in a single microemulsion, simultaneously, in the presence of 35% of HCl in the water phase, as a capping agent. Electrochemical behavior of the PtAu/C catalyst was investigated at as prepared electrodes by cyclic voltammetry in 0.5M H2SO4 as a supporting electrolyte, and also in the oxidation of adsorbed CO. The results were compared to the Pt/C catalyst prepared by the same synthesis procedure. PtAu/C catalyst powder was also characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Average particle diameter, of 2nm, was calculated from XRD data, which is close to the value of 2.82 nm obtained from TEM images. Compared to identically synthesized Pt nanoparticles, the bimetallic ones are significantly smaller. EDS maps of PtAu/C sample confirm the presence of both elements, and indicate a very fine distribution of Au in the sample. Elemental composition of about 20% Au and 80% Pt was also determined from these maps. Prepared catalyst was tested for formic acid electro-oxidation in terms of its activity and stability over the long term cycling. The voltammograms recorded indicate the change of reaction mechanism and better utilization of the catalyst surface in comparison to Pt/C., PtAu sistemi se smatraju veoma dobrim katalizatorima za elektrooksidaciju mravlje kiseline, kao moguće anodne reakcije u niskotemperaturnim gorivnim galvanskim spregovima. U ovom radu bimetalne PtAu nanočestice sintetizovane su mikromulzionim postupkom, i u toku sinteze nanete na ugljenični nosač Vulcan XC-72R. Procesi redukcije prekursora odigravaju se simultano, unutar vodene faze iste mikroemulzije, u prisustvu 35% HCl. Elektrohemijske karakteristike katalizatora ispitivane su cikličnom voltametrijomv na 'as prepared' elektrodama u 0.5M H2SO4 kao osnovnom elektrolitu, kao i prilikom oksidacije adsorbovanog CO. Rezultati su upoređeni sa Pt/C katalizatorom sintetizovanim istim postupkom i pod istovetnim uslovima. Pripremljeni PtAu/C prah okarakterisan je takođe difrakcijom X-zraka, transmisionom elektronskom mikroskopijom i energetski disperzionom spektroskoijom. Veličina čestice određena analizom difraktograma X-zraka iznosi 2nm, što je blisko vrednosti dobijenoj analizom TEM snimaka od 2.82 nm. U poređenju sa Pt nanočesticama sintetizovanim na isti način, bimetalne nanočestice su znatno manjeg prečnika. Mape uzorka PtAu/C dobijene energetski disperzionom spektroskopijom potvrđuju prisustvo oba elementa i pokazuju veoma finu distribuciju Au u uzorku. Analizo mapa utvrđeno je i da je katalizator sastava 20% Au i 80% Pt. Konačno, ispitane su aktivnost i stabilnost bimetalnog katalizatora za oksidaciju mravlje kiseline. Snimljeni voltamogrami ukazuju na promenu reakcionog mehanizma i bolje iskorišćenje površine katalizatora u poređenju ra Pt/C katalizatorom sintetizovanim istim postupkom.",
publisher = "Belgrade, Serbia : Engineering Society for Corrosion",
journal = "Zaštita materijala",
title = "PtAu catalyst with enhanced activity for formic acid oxidation, PtAu katalizator sa poboljšanom aktivnošću za reakciju oksidacije mravlje kiseline",
volume = "59",
number = "2",
pages = "159-166",
doi = "10.5937/ZasMat1802159K"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Rogan, J. R., Radmilović, V. R.,& Jovanović, V. M.. (2018). PtAu catalyst with enhanced activity for formic acid oxidation. in Zaštita materijala
Belgrade, Serbia : Engineering Society for Corrosion., 59(2), 159-166.
https://doi.org/10.5937/ZasMat1802159K
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Rogan JR, Radmilović VR, Jovanović VM. PtAu catalyst with enhanced activity for formic acid oxidation. in Zaštita materijala. 2018;59(2):159-166.
doi:10.5937/ZasMat1802159K .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Rogan, Jelena R., Radmilović, Velimir R., Jovanović, Vladislava M., "PtAu catalyst with enhanced activity for formic acid oxidation" in Zaštita materijala, 59, no. 2 (2018):159-166,
https://doi.org/10.5937/ZasMat1802159K . .
2

Shape evolution of carbon supported Pt nanoparticles: From synthesis to application

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Elsevier, 2016)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4294
AB  - In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Shape evolution of carbon supported Pt nanoparticles: From synthesis to application
VL  - 196
SP  - 174
EP  - 184
DO  - 10.1016/j.apcatb.2016.05.033
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2016",
abstract = "In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application",
volume = "196",
pages = "174-184",
doi = "10.1016/j.apcatb.2016.05.033"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2016). Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental
Elsevier., 196, 174-184.
https://doi.org/10.1016/j.apcatb.2016.05.033
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL, Jovanović VM. Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental. 2016;196:174-184.
doi:10.1016/j.apcatb.2016.05.033 .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application" in Applied Catalysis B-Environmental, 196 (2016):174-184,
https://doi.org/10.1016/j.apcatb.2016.05.033 . .
1
15
14
15

Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media

Obradović, Maja; Stancic, Z M; Lačnjevac, Uroš; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Velimir R.; Gojković, Snežana Lj.

(Elsevier, 2016)

TY  - JOUR
AU  - Obradović, Maja
AU  - Stancic, Z M
AU  - Lačnjevac, Uroš
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2001
AB  - Pd-Ni/C catalyst was synthesized employing a borohydride reduction method. The high area Ni was first dispersed on the carbon support and then modified by Pd nanoparticles. Transmission electron microscopy confirmed relatively even distribution of Ni across the carbon support with discrete palladium particles of about 3.3 nm mean diameter on it. Cyclic voltammetry confirmed the presence of Ni on the catalyst surface. The activity of the Pd-Ni/C catalysts for ethanol oxidation reaction (EOR) in alkaline solution was tested under the potentiodynamic and potentiostatic conditions and the results were compared to those obtained on the Pd/C catalyst. It was found that Pd-Ni/C is more active for the EOR compared to Pd/C by a factor up to 3, depending on the type of experiments and whether specific activity or mass activity are considered. During the potentiodynamic stability test an interesting phenomenon of activation of Pd-Ni/C catalyst was observed. It was found that maximum activity is attained after fifty cycles with the positive potential limit of 1.2 V, regardless of whether they were performed in the electrolyte with or without ethanol. It was postulated that potential cycling of the Pd-Ni surface causes reorganization of the catalyst surface bringing Pd and Ni sites to a more suitable arrangement for the efficient ethanol oxidation.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media
VL  - 189
SP  - 110
EP  - 118
DO  - 10.1016/j.apcatb.2016.02.039
ER  - 
@article{
author = "Obradović, Maja and Stancic, Z M and Lačnjevac, Uroš and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2016",
abstract = "Pd-Ni/C catalyst was synthesized employing a borohydride reduction method. The high area Ni was first dispersed on the carbon support and then modified by Pd nanoparticles. Transmission electron microscopy confirmed relatively even distribution of Ni across the carbon support with discrete palladium particles of about 3.3 nm mean diameter on it. Cyclic voltammetry confirmed the presence of Ni on the catalyst surface. The activity of the Pd-Ni/C catalysts for ethanol oxidation reaction (EOR) in alkaline solution was tested under the potentiodynamic and potentiostatic conditions and the results were compared to those obtained on the Pd/C catalyst. It was found that Pd-Ni/C is more active for the EOR compared to Pd/C by a factor up to 3, depending on the type of experiments and whether specific activity or mass activity are considered. During the potentiodynamic stability test an interesting phenomenon of activation of Pd-Ni/C catalyst was observed. It was found that maximum activity is attained after fifty cycles with the positive potential limit of 1.2 V, regardless of whether they were performed in the electrolyte with or without ethanol. It was postulated that potential cycling of the Pd-Ni surface causes reorganization of the catalyst surface bringing Pd and Ni sites to a more suitable arrangement for the efficient ethanol oxidation.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media",
volume = "189",
pages = "110-118",
doi = "10.1016/j.apcatb.2016.02.039"
}
Obradović, M., Stancic, Z. M., Lačnjevac, U., Radmilović, V. V., Gavrilović-Wohlmuther, A., Radmilović, V. R.,& Gojković, S. Lj.. (2016). Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. in Applied Catalysis B-Environmental
Elsevier., 189, 110-118.
https://doi.org/10.1016/j.apcatb.2016.02.039
Obradović M, Stancic ZM, Lačnjevac U, Radmilović VV, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. in Applied Catalysis B-Environmental. 2016;189:110-118.
doi:10.1016/j.apcatb.2016.02.039 .
Obradović, Maja, Stancic, Z M, Lačnjevac, Uroš, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., "Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media" in Applied Catalysis B-Environmental, 189 (2016):110-118,
https://doi.org/10.1016/j.apcatb.2016.02.039 . .
1
99
71
91

Shape evolution of carbon supported Pt nanoparticles: From synthesis to application

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Elsevier, 2016)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1855
AB  - In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Shape evolution of carbon supported Pt nanoparticles: From synthesis to application
VL  - 196
SP  - 174
EP  - 184
DO  - 10.1016/j.apcatb.2016.05.033
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2016",
abstract = "In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application",
volume = "196",
pages = "174-184",
doi = "10.1016/j.apcatb.2016.05.033"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2016). Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental
Elsevier., 196, 174-184.
https://doi.org/10.1016/j.apcatb.2016.05.033
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL, Jovanović VM. Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental. 2016;196:174-184.
doi:10.1016/j.apcatb.2016.05.033 .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application" in Applied Catalysis B-Environmental, 196 (2016):174-184,
https://doi.org/10.1016/j.apcatb.2016.05.033 . .
1
15
14
15

Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method

Krstajić Pajić, Mila N.; Stevanović, Sanja; Radmilović, Vuk V.; Rogan, Jelena R.; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Springer, New York, 2016)

TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Rogan, Jelena R.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1986
AB  - Pt nanoparticles supported on Vulcan XC-72R were synthesized by water-in-oil microemulsion method. By incorporating different amounts of HCl as a capping agent in the precursor-containing water phase, nanoparticle shape was varied. Influencing the growth of certain facets leads to the changes of the particle shape depending on the preferential facets. As a result, nanoparticles exhibit some of the electrochemical features typical for single crystals. Commonly employed synthesis procedure for water-in-oil microemulsion method was altered with the addition of catalyst support in the system and changing the catalyst cleaning steps. Prepared catalysts were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and electrochemical methods. Activity and stability for methanol oxidation reaction (MOR), a structure-sensitive reaction, were tested. Electrochemical results reveal the influence of particle size, shape and exposed facets on the electrochemical processes. TEM investigations confirm electrochemical findings, while TGA verifies Pt loading in catalyst powder. Based on the results, optimal HCl concentration for cubic particle formation is determined, and structural effect on MOR activity and stability was tested. Cuboidal NPs show very good reaction activity and fair stability under applied experimental conditions.
PB  - Springer, New York
T2  - Journal of Solid State Electrochemistry
T1  - Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method
VL  - 20
IS  - 12
SP  - 3405
EP  - 3414
DO  - 10.1007/s10008-016-3319-z
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Rogan, Jelena R. and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2016",
abstract = "Pt nanoparticles supported on Vulcan XC-72R were synthesized by water-in-oil microemulsion method. By incorporating different amounts of HCl as a capping agent in the precursor-containing water phase, nanoparticle shape was varied. Influencing the growth of certain facets leads to the changes of the particle shape depending on the preferential facets. As a result, nanoparticles exhibit some of the electrochemical features typical for single crystals. Commonly employed synthesis procedure for water-in-oil microemulsion method was altered with the addition of catalyst support in the system and changing the catalyst cleaning steps. Prepared catalysts were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and electrochemical methods. Activity and stability for methanol oxidation reaction (MOR), a structure-sensitive reaction, were tested. Electrochemical results reveal the influence of particle size, shape and exposed facets on the electrochemical processes. TEM investigations confirm electrochemical findings, while TGA verifies Pt loading in catalyst powder. Based on the results, optimal HCl concentration for cubic particle formation is determined, and structural effect on MOR activity and stability was tested. Cuboidal NPs show very good reaction activity and fair stability under applied experimental conditions.",
publisher = "Springer, New York",
journal = "Journal of Solid State Electrochemistry",
title = "Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method",
volume = "20",
number = "12",
pages = "3405-3414",
doi = "10.1007/s10008-016-3319-z"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Rogan, J. R., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2016). Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method. in Journal of Solid State Electrochemistry
Springer, New York., 20(12), 3405-3414.
https://doi.org/10.1007/s10008-016-3319-z
Krstajić Pajić MN, Stevanović S, Radmilović VV, Rogan JR, Radmilović VR, Gojković SL, Jovanović VM. Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method. in Journal of Solid State Electrochemistry. 2016;20(12):3405-3414.
doi:10.1007/s10008-016-3319-z .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Rogan, Jelena R., Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Pt/C nanocatalysts for methanol electrooxidation prepared by water-in-oil microemulsion method" in Journal of Solid State Electrochemistry, 20, no. 12 (2016):3405-3414,
https://doi.org/10.1007/s10008-016-3319-z . .
1
3
2
3

Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application

Gajić Krstajić, Ljiljana; Zabinski, Piotr; Radmilović, Velimir R.; Ercius, Peter; Krstajić Pajić, Mila N.; Lačnjevac, Uroš; Krstajić, Nedeljko; Elezović, Nevenka

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Zabinski, Piotr
AU  - Radmilović, Velimir R.
AU  - Ercius, Peter
AU  - Krstajić Pajić, Mila N.
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko
AU  - Elezović, Nevenka
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/895
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2862
AB  - Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.The authors would like to acknowledge networking support by the COST Action MP1407.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_dais_895
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Zabinski, Piotr and Radmilović, Velimir R. and Ercius, Peter and Krstajić Pajić, Mila N. and Lačnjevac, Uroš and Krstajić, Nedeljko and Elezović, Nevenka",
year = "2016",
abstract = "Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.The authors would like to acknowledge networking support by the COST Action MP1407.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_dais_895"
}
Gajić Krstajić, L., Zabinski, P., Radmilović, V. R., Ercius, P., Krstajić Pajić, M. N., Lačnjevac, U., Krstajić, N.,& Elezović, N.. (2016). Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 71-71.
https://hdl.handle.net/21.15107/rcub_dais_895
Gajić Krstajić L, Zabinski P, Radmilović VR, Ercius P, Krstajić Pajić MN, Lačnjevac U, Krstajić N, Elezović N. Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:71-71.
https://hdl.handle.net/21.15107/rcub_dais_895 .
Gajić Krstajić, Ljiljana, Zabinski, Piotr, Radmilović, Velimir R., Ercius, Peter, Krstajić Pajić, Mila N., Lačnjevac, Uroš, Krstajić, Nedeljko, Elezović, Nevenka, "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):71-71,
https://hdl.handle.net/21.15107/rcub_dais_895 .

RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation

Obradović, Maja; Lačnjevac, Uroš; Babic, B M; Ercius, P; Radmilović, Velimir R.; Krstajić, Nedeljko V.; Gojković, Snežana Lj.

(Elsevier, 2015)

TY  - JOUR
AU  - Obradović, Maja
AU  - Lačnjevac, Uroš
AU  - Babic, B M
AU  - Ercius, P
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko V.
AU  - Gojković, Snežana Lj.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1763
AB  - Two binary Ru-Ti oxides, Rum Ti0.9O2 and Ru0.7Ti0.3O2, were synthesized by the sol-gel method and used as an electrocatalyst support. The system was characterized by XRD, EDS, TEM and cyclic voltammetry. The Rum Ti0.9O2 and Ru0.7Ti0.3O2 consist of two phases of anatase and rutile structure. An average size of the Pt nanoparticles supported on them is similar to 3.5 nm and they are deposited on both Ru and Ti-rich domains. The supports exhibited good conductivity and electrochemical stability. The onset potentials of COads oxidation on the synthesized catalysts and on commercial PtRu/C are similar to each other and lower than that on Pt/C. This suggests that in Pt/Rum Ti0.9O2 and Pt/Ru0(.7)Ti(0.3)O(2) the Pt nanoparticles are in close contact with Ru atoms from the support, which enables the bifunctional mechanism. The activity and stability of the catalysts for methanol oxidation were examined under potentiodynamic and potentiostatic conditions. While the activity of Pt/Rum Ti0.9O2 is unsatisfactory, the performance of Pt/Ru0.7Ti0.3O2 is comparable to PtRu/C. For example, in the potentiostatic test at 0.5 V the activities after 25 min are 0.035 mA cm(-2) and 0.022 mA cm(-2) for Pt/Ru0.7Ti0.3O2 and PtRu/C, respectively. In potentiodynamic test the activities at 0.5V after 250 cycles are around 0.02 mA cm(-2) for both catalysts.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation
VL  - 170
SP  - 144
EP  - 152
DO  - 10.1016/j.apcatb.2015.01.038
ER  - 
@article{
author = "Obradović, Maja and Lačnjevac, Uroš and Babic, B M and Ercius, P and Radmilović, Velimir R. and Krstajić, Nedeljko V. and Gojković, Snežana Lj.",
year = "2015",
abstract = "Two binary Ru-Ti oxides, Rum Ti0.9O2 and Ru0.7Ti0.3O2, were synthesized by the sol-gel method and used as an electrocatalyst support. The system was characterized by XRD, EDS, TEM and cyclic voltammetry. The Rum Ti0.9O2 and Ru0.7Ti0.3O2 consist of two phases of anatase and rutile structure. An average size of the Pt nanoparticles supported on them is similar to 3.5 nm and they are deposited on both Ru and Ti-rich domains. The supports exhibited good conductivity and electrochemical stability. The onset potentials of COads oxidation on the synthesized catalysts and on commercial PtRu/C are similar to each other and lower than that on Pt/C. This suggests that in Pt/Rum Ti0.9O2 and Pt/Ru0(.7)Ti(0.3)O(2) the Pt nanoparticles are in close contact with Ru atoms from the support, which enables the bifunctional mechanism. The activity and stability of the catalysts for methanol oxidation were examined under potentiodynamic and potentiostatic conditions. While the activity of Pt/Rum Ti0.9O2 is unsatisfactory, the performance of Pt/Ru0.7Ti0.3O2 is comparable to PtRu/C. For example, in the potentiostatic test at 0.5 V the activities after 25 min are 0.035 mA cm(-2) and 0.022 mA cm(-2) for Pt/Ru0.7Ti0.3O2 and PtRu/C, respectively. In potentiodynamic test the activities at 0.5V after 250 cycles are around 0.02 mA cm(-2) for both catalysts.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation",
volume = "170",
pages = "144-152",
doi = "10.1016/j.apcatb.2015.01.038"
}
Obradović, M., Lačnjevac, U., Babic, B. M., Ercius, P., Radmilović, V. R., Krstajić, N. V.,& Gojković, S. Lj.. (2015). RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation. in Applied Catalysis B-Environmental
Elsevier., 170, 144-152.
https://doi.org/10.1016/j.apcatb.2015.01.038
Obradović M, Lačnjevac U, Babic BM, Ercius P, Radmilović VR, Krstajić NV, Gojković SL. RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation. in Applied Catalysis B-Environmental. 2015;170:144-152.
doi:10.1016/j.apcatb.2015.01.038 .
Obradović, Maja, Lačnjevac, Uroš, Babic, B M, Ercius, P, Radmilović, Velimir R., Krstajić, Nedeljko V., Gojković, Snežana Lj., "RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation" in Applied Catalysis B-Environmental, 170 (2015):144-152,
https://doi.org/10.1016/j.apcatb.2015.01.038 . .
25
20
23

Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC

Krstajić, Mila; Stevanović, Sanja; Radmilović, Vuk V.; Rogan, Jelena R.; Gavrilović-Wohlmuther, Aleksandra; Radmilović, Velimir R.; Gojković, Snežana Lj.; Jovanović, Vladislava M.

(Academician Evgeni Budevski Institute of Electrochemistry and Energy Systems Bulgarian Academy of Sciences, Sofia, Bulgaria, 2015)

TY  - CONF
AU  - Krstajić, Mila
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Rogan, Jelena R.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2015
UR  - http://www.aseee.eu/index.php/rse-see5-home
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3556
AB  - Electrocatalytic activity of platinum-based electrocatalysts used in fuel cells has been well recognized. However, significant attention remains on the particle shape and size control of such nanomaterials. Catalytic activity can be enhanced by alloying Pt with another element (e.g. Ru and Sn), or by supporting Pt on metal oxides, both of which involve a bifunctional effect. It is also possible to achieve better catalytic characteristics by exposing different Pt crystal facets, which alters chemical and electronic interactions (structural effect). In order to synthesize Pt nanoparticles of a pre-determined shape, water in oil microemulsion method was used, with a few modifications: carbon support (Vulcan XC-72R) was added into the microemulsion itself, just after the completion of the reduction reaction of H2PtCl6 with NaBH4 as the reducing agent and this was crucial for further improvements of the catalyst cleaning procedures. Microemulsion consisted of [n-heptane] / [polyethileneglycoldodecyether (BRIJ30)] / [0,1M H2PtCl6 in 0, 15, 25 and 35% HCl], so four Pt catalyst were formed using different amounts of HCl in the water phase of the microemulsion. In comparison to previously reported applications of the microemulsion method, where electrochemical treatment of catalysts before its application was necessary, this alteration of cleaning steps made use of the “as prepared” catalysts possible. Catalysts A (0% HCl), B (15% HCl), C (25% HCl) and D (35% HCl) were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM), as well as with electrochemical characterization methods (cyclic voltammetry in supporting electrolyte, CO stripping). TEM images confirmed the presence of cubic Pt particles, and indicated their good dispersion on carbon support, while XRD patterns revealed the share of each plane orientation in all investigated catalysts. This acknowledged the influence of HCl in the microemulsion on the shape of Pt particles. Mean particle size was determined both by TEM and XRD investigations, which are in good accordance, and show that average diameters of these four catalysts vary from 3 to 8 nm.
PB  - Academician Evgeni Budevski Institute of Electrochemistry and Energy Systems Bulgarian Academy of Sciences, Sofia, Bulgaria
C3  - 5th Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Program and Book of Abstracts
T1  - Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_cer_3556
ER  - 
@conference{
author = "Krstajić, Mila and Stevanović, Sanja and Radmilović, Vuk V. and Rogan, Jelena R. and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2015",
abstract = "Electrocatalytic activity of platinum-based electrocatalysts used in fuel cells has been well recognized. However, significant attention remains on the particle shape and size control of such nanomaterials. Catalytic activity can be enhanced by alloying Pt with another element (e.g. Ru and Sn), or by supporting Pt on metal oxides, both of which involve a bifunctional effect. It is also possible to achieve better catalytic characteristics by exposing different Pt crystal facets, which alters chemical and electronic interactions (structural effect). In order to synthesize Pt nanoparticles of a pre-determined shape, water in oil microemulsion method was used, with a few modifications: carbon support (Vulcan XC-72R) was added into the microemulsion itself, just after the completion of the reduction reaction of H2PtCl6 with NaBH4 as the reducing agent and this was crucial for further improvements of the catalyst cleaning procedures. Microemulsion consisted of [n-heptane] / [polyethileneglycoldodecyether (BRIJ30)] / [0,1M H2PtCl6 in 0, 15, 25 and 35% HCl], so four Pt catalyst were formed using different amounts of HCl in the water phase of the microemulsion. In comparison to previously reported applications of the microemulsion method, where electrochemical treatment of catalysts before its application was necessary, this alteration of cleaning steps made use of the “as prepared” catalysts possible. Catalysts A (0% HCl), B (15% HCl), C (25% HCl) and D (35% HCl) were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM), as well as with electrochemical characterization methods (cyclic voltammetry in supporting electrolyte, CO stripping). TEM images confirmed the presence of cubic Pt particles, and indicated their good dispersion on carbon support, while XRD patterns revealed the share of each plane orientation in all investigated catalysts. This acknowledged the influence of HCl in the microemulsion on the shape of Pt particles. Mean particle size was determined both by TEM and XRD investigations, which are in good accordance, and show that average diameters of these four catalysts vary from 3 to 8 nm.",
publisher = "Academician Evgeni Budevski Institute of Electrochemistry and Energy Systems Bulgarian Academy of Sciences, Sofia, Bulgaria",
journal = "5th Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Program and Book of Abstracts",
title = "Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_cer_3556"
}
Krstajić, M., Stevanović, S., Radmilović, V. V., Rogan, J. R., Gavrilović-Wohlmuther, A., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2015). Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC. in 5th Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Program and Book of Abstracts
Academician Evgeni Budevski Institute of Electrochemistry and Energy Systems Bulgarian Academy of Sciences, Sofia, Bulgaria., 78-78.
https://hdl.handle.net/21.15107/rcub_cer_3556
Krstajić M, Stevanović S, Radmilović VV, Rogan JR, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL, Jovanović VM. Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC. in 5th Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Program and Book of Abstracts. 2015;:78-78.
https://hdl.handle.net/21.15107/rcub_cer_3556 .
Krstajić, Mila, Stevanović, Sanja, Radmilović, Vuk V., Rogan, Jelena R., Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Shape Controlled, Carbon Supported Pt Anodic Catalysts for DFAFC" in 5th Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Program and Book of Abstracts (2015):78-78,
https://hdl.handle.net/21.15107/rcub_cer_3556 .

Randomly oriented twin domains in electrodeposited silver dendrites

Ivanović, Evica; Nikolić, Nebojša D.; Radmilović, Velimir R.

(Serbian Chemical Society, 2015)

TY  - JOUR
AU  - Ivanović, Evica
AU  - Nikolić, Nebojša D.
AU  - Radmilović, Velimir R.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1738
AB  - Silver dendrites were prepared by electrochemical deposition. The structures of the Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM), Z-contrast high angle annular dark field transmission electron microscopy (HAADF), and crystallographically sensitive orientation imaging microscopy (OIM). The results revealed that the silver dendrites were characterized by the presence of randomly distributed 180 degrees rotational twin domains. The broad surface of dendrites was of the {111} type. The directions of growth of the main dendrite stem and all branches were of the  LT 112> type.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Randomly oriented twin domains in electrodeposited silver dendrites
VL  - 80
IS  - 1
SP  - 107
EP  - 113
DO  - 10.2298/JSC140306045I
ER  - 
@article{
author = "Ivanović, Evica and Nikolić, Nebojša D. and Radmilović, Velimir R.",
year = "2015",
abstract = "Silver dendrites were prepared by electrochemical deposition. The structures of the Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM), Z-contrast high angle annular dark field transmission electron microscopy (HAADF), and crystallographically sensitive orientation imaging microscopy (OIM). The results revealed that the silver dendrites were characterized by the presence of randomly distributed 180 degrees rotational twin domains. The broad surface of dendrites was of the {111} type. The directions of growth of the main dendrite stem and all branches were of the  LT 112> type.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Randomly oriented twin domains in electrodeposited silver dendrites",
volume = "80",
number = "1",
pages = "107-113",
doi = "10.2298/JSC140306045I"
}
Ivanović, E., Nikolić, N. D.,& Radmilović, V. R.. (2015). Randomly oriented twin domains in electrodeposited silver dendrites. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 80(1), 107-113.
https://doi.org/10.2298/JSC140306045I
Ivanović E, Nikolić ND, Radmilović VR. Randomly oriented twin domains in electrodeposited silver dendrites. in Journal of the Serbian Chemical Society. 2015;80(1):107-113.
doi:10.2298/JSC140306045I .
Ivanović, Evica, Nikolić, Nebojša D., Radmilović, Velimir R., "Randomly oriented twin domains in electrodeposited silver dendrites" in Journal of the Serbian Chemical Society, 80, no. 1 (2015):107-113,
https://doi.org/10.2298/JSC140306045I . .
1
8
5
2

Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst

Krstajić, Mila N.; Obradović, Maja; Babić, Biljana M.; Radmilović, Velimir R.; Lačnjevac, Uroš; Krstajić, Nedeljko V.; Gojković, Snežana Lj.

(Serbian Chemical Society, 2013)

TY  - JOUR
AU  - Krstajić, Mila N.
AU  - Obradović, Maja
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R.
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko V.
AU  - Gojković, Snežana Lj.
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1232
AB  - Ru-doped SnO2 powder, (RuxSn1-x)O2, with a Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass % loading). The (RuxSn1-x)O2 support and the Pt/(RuxSn1-x)O2 catalyst were characterized by X-ray diffraction measurements, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). The (RuxSn1-x)O2 was found to be a two-phase material consisting of probably a solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O2 indicated good conductivity of the support and displayed the usual features of Pt. The results of the electrochemical oxidation of COads and methanol on Pt/(RuxSn1-x)O2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O2 starts at lower positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of the Pt/(RuxSn1-x)O2 catalyst compared to PtRu/C, but also a greater loss in current density over time. A potentiodynamic stability test of the catalysts revealed that deactivation of Pt/(RuxSn1-x)O2 and Pt/C was primarily caused by poisoning of the Pt surface by residues of methanol oxidation, which mostly occurred during the first potential cycle. In the case of PtRu/C, the poisoning of the surface was minor and deactivation was caused by surface area loss of the PtRu.
AB  - Sintetizovan je prah SnO2 dopovan rutenijumom, (RuxSn1-x)O2, sa atomskim odnosom Sn:Ru od 9:1, i korišćen kao nosač nanočestica platine. Udeo Pt u dobijenom katalizatoru, Pt/(RuxSn1-x)O2, bio je 30 mas. %. Nosač i katalizator su karakterisani difrakcijom X-zraka, energetski disperzivnom spektroskopijom X-zraka i transmisionom elektronskom mikroskopijom (TEM). Pokazano je da je (RuxSn1-x)O2 dvofazni materijal koji verovatno sadrži čvrst rastvor RuO2 u SnO2 i čist RuO2. Prosečna veličina zrna Pt, određena TEM analizom, iznosi 5,3 nm. Ciklična voltametrija Pt/(RuxSn1-x)O2 ukazala je na dobru provodnost nosača katalizatora i na uobičajene karakteristike Pt. Upoređeni su rezultati elektrohemijske oksidacije COads na Pt/(RuxSn1-x)O2, Pt/C i PtRu/C. Oksidacija COads na Pt/(RuxSn1-x)O2 počinje na negativnijim potencijalima u odnosu na PtRu/C i Pt/C. Potenciodinamičke polarizacione krive i hronoamperometrijske krive za oksidaciju metanola ukazuju na veću početnu aktivnost katalizatora Pt/(RuxSn1-x)O2 u odnosu na PtRu/C, ali i na veće smanjenje gustine struje tokom vremena. Test potenciodinamičke stabilnosti katalizatora je ukazao da je smanjenje aktivnosti Pt/(RuxSn1-x)O2 i Pt/C prvenstveno prouzrokovano trovanjem površine Pt proizvodima nepotpune oksidacije metanola, koje se uglavnom odigrava tokom prvog ciklusa. Kod PtRu/C trovanje površine je minimalno, a smanjenje aktivnosti je prouzrokovano smanjenjem elektrohemijski aktivne površine PtRu.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst
T1  - Elektrohemijska oksidacija metanola na katalizatoru Pt/(RuxSn1-x)O2
VL  - 78
IS  - 11
SP  - 1703
EP  - 1716
DO  - 10.2298/JSC130718091K
ER  - 
@article{
author = "Krstajić, Mila N. and Obradović, Maja and Babić, Biljana M. and Radmilović, Velimir R. and Lačnjevac, Uroš and Krstajić, Nedeljko V. and Gojković, Snežana Lj.",
year = "2013",
abstract = "Ru-doped SnO2 powder, (RuxSn1-x)O2, with a Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass % loading). The (RuxSn1-x)O2 support and the Pt/(RuxSn1-x)O2 catalyst were characterized by X-ray diffraction measurements, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). The (RuxSn1-x)O2 was found to be a two-phase material consisting of probably a solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O2 indicated good conductivity of the support and displayed the usual features of Pt. The results of the electrochemical oxidation of COads and methanol on Pt/(RuxSn1-x)O2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O2 starts at lower positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of the Pt/(RuxSn1-x)O2 catalyst compared to PtRu/C, but also a greater loss in current density over time. A potentiodynamic stability test of the catalysts revealed that deactivation of Pt/(RuxSn1-x)O2 and Pt/C was primarily caused by poisoning of the Pt surface by residues of methanol oxidation, which mostly occurred during the first potential cycle. In the case of PtRu/C, the poisoning of the surface was minor and deactivation was caused by surface area loss of the PtRu., Sintetizovan je prah SnO2 dopovan rutenijumom, (RuxSn1-x)O2, sa atomskim odnosom Sn:Ru od 9:1, i korišćen kao nosač nanočestica platine. Udeo Pt u dobijenom katalizatoru, Pt/(RuxSn1-x)O2, bio je 30 mas. %. Nosač i katalizator su karakterisani difrakcijom X-zraka, energetski disperzivnom spektroskopijom X-zraka i transmisionom elektronskom mikroskopijom (TEM). Pokazano je da je (RuxSn1-x)O2 dvofazni materijal koji verovatno sadrži čvrst rastvor RuO2 u SnO2 i čist RuO2. Prosečna veličina zrna Pt, određena TEM analizom, iznosi 5,3 nm. Ciklična voltametrija Pt/(RuxSn1-x)O2 ukazala je na dobru provodnost nosača katalizatora i na uobičajene karakteristike Pt. Upoređeni su rezultati elektrohemijske oksidacije COads na Pt/(RuxSn1-x)O2, Pt/C i PtRu/C. Oksidacija COads na Pt/(RuxSn1-x)O2 počinje na negativnijim potencijalima u odnosu na PtRu/C i Pt/C. Potenciodinamičke polarizacione krive i hronoamperometrijske krive za oksidaciju metanola ukazuju na veću početnu aktivnost katalizatora Pt/(RuxSn1-x)O2 u odnosu na PtRu/C, ali i na veće smanjenje gustine struje tokom vremena. Test potenciodinamičke stabilnosti katalizatora je ukazao da je smanjenje aktivnosti Pt/(RuxSn1-x)O2 i Pt/C prvenstveno prouzrokovano trovanjem površine Pt proizvodima nepotpune oksidacije metanola, koje se uglavnom odigrava tokom prvog ciklusa. Kod PtRu/C trovanje površine je minimalno, a smanjenje aktivnosti je prouzrokovano smanjenjem elektrohemijski aktivne površine PtRu.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst, Elektrohemijska oksidacija metanola na katalizatoru Pt/(RuxSn1-x)O2",
volume = "78",
number = "11",
pages = "1703-1716",
doi = "10.2298/JSC130718091K"
}
Krstajić, M. N., Obradović, M., Babić, B. M., Radmilović, V. R., Lačnjevac, U., Krstajić, N. V.,& Gojković, S. Lj.. (2013). Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 78(11), 1703-1716.
https://doi.org/10.2298/JSC130718091K
Krstajić MN, Obradović M, Babić BM, Radmilović VR, Lačnjevac U, Krstajić NV, Gojković SL. Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst. in Journal of the Serbian Chemical Society. 2013;78(11):1703-1716.
doi:10.2298/JSC130718091K .
Krstajić, Mila N., Obradović, Maja, Babić, Biljana M., Radmilović, Velimir R., Lačnjevac, Uroš, Krstajić, Nedeljko V., Gojković, Snežana Lj., "Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O2 nanocatalyst" in Journal of the Serbian Chemical Society, 78, no. 11 (2013):1703-1716,
https://doi.org/10.2298/JSC130718091K . .
2
1
1

The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles

Obradović, Maja; Gojković, Snežana Lj.; Elezović, Nevenka R.; Ercius, P.; Radmilović, Velimir R.; Vracar, Lj. D.; Krstajić, Nedeljko V.

(Elsevier, 2012)

TY  - JOUR
AU  - Obradović, Maja
AU  - Gojković, Snežana Lj.
AU  - Elezović, Nevenka R.
AU  - Ercius, P.
AU  - Radmilović, Velimir R.
AU  - Vracar, Lj. D.
AU  - Krstajić, Nedeljko V.
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/948
AB  - The catalytic activity of WC/Pt electrocatalysts towards hydrogen oxidation reaction (HOR) in acid solution was studied. Tungsten carbide (WC) prepared by polycondensation of resorcinol and formaldehyde in the presence of ammonium metatungstate salt and CTABr surfactant was used as the support of a Pt electrocatalyst (WC/Pt). The obtained WC/Pt electrodes were characterized by XRD, HRTEM, EDS, EELS and electrochemical measurements. HRTEM analysis showed that the WC particles possess a core-shell structure with a metallic tungsten core and a shell composed of a mixture of tungsten carbides shell (WC and W2C). The WC/Pt catalyst is composed of well-dispersed sub-nanometer Pt clusters which consist of a few to several tens of Pt atoms. EELS measurements indicate that the WC particles function as nucleation sites for Pt nanoparticles. Based on the Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the HOR current-potential behavior over the entire potential region on RDE. The fitting showed that in the lower potential region HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway. The kinetic results also showed that the WC/Pt(1%) when compared to the standard C/Pt(1%) electrode led to a remarkable enhancement of the hydrogen oxidation in an acidic medium, which was explained by H-spill-over between platinum and tungsten carbide.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles
VL  - 671
SP  - 24
EP  - 32
DO  - 10.1016/j.jelechem.2012.01.026
ER  - 
@article{
author = "Obradović, Maja and Gojković, Snežana Lj. and Elezović, Nevenka R. and Ercius, P. and Radmilović, Velimir R. and Vracar, Lj. D. and Krstajić, Nedeljko V.",
year = "2012",
abstract = "The catalytic activity of WC/Pt electrocatalysts towards hydrogen oxidation reaction (HOR) in acid solution was studied. Tungsten carbide (WC) prepared by polycondensation of resorcinol and formaldehyde in the presence of ammonium metatungstate salt and CTABr surfactant was used as the support of a Pt electrocatalyst (WC/Pt). The obtained WC/Pt electrodes were characterized by XRD, HRTEM, EDS, EELS and electrochemical measurements. HRTEM analysis showed that the WC particles possess a core-shell structure with a metallic tungsten core and a shell composed of a mixture of tungsten carbides shell (WC and W2C). The WC/Pt catalyst is composed of well-dispersed sub-nanometer Pt clusters which consist of a few to several tens of Pt atoms. EELS measurements indicate that the WC particles function as nucleation sites for Pt nanoparticles. Based on the Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the HOR current-potential behavior over the entire potential region on RDE. The fitting showed that in the lower potential region HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway. The kinetic results also showed that the WC/Pt(1%) when compared to the standard C/Pt(1%) electrode led to a remarkable enhancement of the hydrogen oxidation in an acidic medium, which was explained by H-spill-over between platinum and tungsten carbide.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles",
volume = "671",
pages = "24-32",
doi = "10.1016/j.jelechem.2012.01.026"
}
Obradović, M., Gojković, S. Lj., Elezović, N. R., Ercius, P., Radmilović, V. R., Vracar, Lj. D.,& Krstajić, N. V.. (2012). The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. in Journal of Electroanalytical Chemistry
Elsevier., 671, 24-32.
https://doi.org/10.1016/j.jelechem.2012.01.026
Obradović M, Gojković SL, Elezović NR, Ercius P, Radmilović VR, Vracar LD, Krstajić NV. The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. in Journal of Electroanalytical Chemistry. 2012;671:24-32.
doi:10.1016/j.jelechem.2012.01.026 .
Obradović, Maja, Gojković, Snežana Lj., Elezović, Nevenka R., Ercius, P., Radmilović, Velimir R., Vracar, Lj. D., Krstajić, Nedeljko V., "The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles" in Journal of Electroanalytical Chemistry, 671 (2012):24-32,
https://doi.org/10.1016/j.jelechem.2012.01.026 . .
16
12
14

Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation

Obradović, Maja; Babić, Biljana M.; Radmilović, Velimir R.; Krstajić, Nedeljko V.; Gojković, Snežana Lj.

(Oxford : Pergamon-Elsevier Science Ltd, 2012)

TY  - JOUR
AU  - Obradović, Maja
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko V.
AU  - Gojković, Snežana Lj.
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/977
AB  - Tungsten carbide was synthesized by calcination of carbon cryogel containing tungsten in a form of metatungstate. Characterization by X-ray diffraction and transmission electron microscopy indicated core-shell structure of the particles with tungsten core and tungsten carbide shell, attached to graphitized carbon. Pt nanoparticles were deposited on this material and most of them were nucleated on tungsten carbide. Cyclic voltammetry of W-C support and Pt/W-C catalyst indicated hydrogen intercalation in surface hydrous tungsten oxide. Oxidation of COads on Pt/W-C commences earlier than on Pt/C for about 100 mV. The onset potentials of MOR on Pt/W-C and Pt/C are the same, but at more positive potentials Pt/W-C catalyst is more active. It was proposed that promotion of MOR is based on bifunctional mechanism that facilitates COads removal. Stability test was performed by potential cycling of Pt/W-C and Pt/C in the supporting electrolyte and in the presence of methanol. Pt surface area loss observed in the supporting electrolyte of both catalysts after 250 cycles was about 20%. Decrease in the activity for methanol oxidation was 30% for Pt/W-C, but even 48% for Pt/C. The difference was explained by the presence of hydrous tungsten oxide on Pt in Pt/W-C catalyst, which reduces accumulation of poisoning COads. Copyright
PB  - Oxford : Pergamon-Elsevier Science Ltd
T2  - International Journal of Hydrogen Energy
T1  - Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation
VL  - 37
IS  - 14
SP  - 10671
EP  - 10679
DO  - 10.1016/j.ijhydene.2012.04.114
ER  - 
@article{
author = "Obradović, Maja and Babić, Biljana M. and Radmilović, Velimir R. and Krstajić, Nedeljko V. and Gojković, Snežana Lj.",
year = "2012",
abstract = "Tungsten carbide was synthesized by calcination of carbon cryogel containing tungsten in a form of metatungstate. Characterization by X-ray diffraction and transmission electron microscopy indicated core-shell structure of the particles with tungsten core and tungsten carbide shell, attached to graphitized carbon. Pt nanoparticles were deposited on this material and most of them were nucleated on tungsten carbide. Cyclic voltammetry of W-C support and Pt/W-C catalyst indicated hydrogen intercalation in surface hydrous tungsten oxide. Oxidation of COads on Pt/W-C commences earlier than on Pt/C for about 100 mV. The onset potentials of MOR on Pt/W-C and Pt/C are the same, but at more positive potentials Pt/W-C catalyst is more active. It was proposed that promotion of MOR is based on bifunctional mechanism that facilitates COads removal. Stability test was performed by potential cycling of Pt/W-C and Pt/C in the supporting electrolyte and in the presence of methanol. Pt surface area loss observed in the supporting electrolyte of both catalysts after 250 cycles was about 20%. Decrease in the activity for methanol oxidation was 30% for Pt/W-C, but even 48% for Pt/C. The difference was explained by the presence of hydrous tungsten oxide on Pt in Pt/W-C catalyst, which reduces accumulation of poisoning COads. Copyright",
publisher = "Oxford : Pergamon-Elsevier Science Ltd",
journal = "International Journal of Hydrogen Energy",
title = "Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation",
volume = "37",
number = "14",
pages = "10671-10679",
doi = "10.1016/j.ijhydene.2012.04.114"
}
Obradović, M., Babić, B. M., Radmilović, V. R., Krstajić, N. V.,& Gojković, S. Lj.. (2012). Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation. in International Journal of Hydrogen Energy
Oxford : Pergamon-Elsevier Science Ltd., 37(14), 10671-10679.
https://doi.org/10.1016/j.ijhydene.2012.04.114
Obradović M, Babić BM, Radmilović VR, Krstajić NV, Gojković SL. Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation. in International Journal of Hydrogen Energy. 2012;37(14):10671-10679.
doi:10.1016/j.ijhydene.2012.04.114 .
Obradović, Maja, Babić, Biljana M., Radmilović, Velimir R., Krstajić, Nedeljko V., Gojković, Snežana Lj., "Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation" in International Journal of Hydrogen Energy, 37, no. 14 (2012):10671-10679,
https://doi.org/10.1016/j.ijhydene.2012.04.114 . .
20
21
23

Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate

Obradović, Maja; Rogan, Jelena R.; Babić, Biljana M.; Tripković, Amalija; Gautam, A. R. S.; Radmilović, Velimir R.; Gojković, Snežana Lj.

(Elsevier, 2012)

TY  - JOUR
AU  - Obradović, Maja
AU  - Rogan, Jelena R.
AU  - Babić, Biljana M.
AU  - Tripković, Amalija
AU  - Gautam, A. R. S.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1086
AB  - Pt-Au nanoparticles supported on high area carbon were prepared by simultaneous reduction of Au and Pt precursors and by reduction of Pt precursor on already prepared Au nanoparticles. The first method produced a solid solution of Pt in Au containing similar to 5% Pt with the remaining Pt on the nanoparticles' surface. For the Pt:Au precursor ratio of 1:4 and 1:9, the surface ratio was found to be 0.70:0.30 and 0.55:0.45, respectively. By the second method with the Pt:Au precursors ratio of 1:12, the surface ratio was 0.30:0.70. The voltammetric peaks of Pt-oxide reduction and CO(ads) oxidation demonstrated electronic modification of Pt by Au in all catalysts. With decreasing Pt:Au surface ratio the activity for HCOOH oxidation increases and surface coverage by CO(ads) decreases. The highest activity under potentiodynamic and quasi steady-state conditions without poisoning by CO(ads) was observed for the catalyst with the lowest Pt:Au surface ratio. Chronoamperometic test showed that its high catalytic activity is associated with a high deactivation rate. It was postulated that too strong adsorption of a reactive or non-reactive intermediate caused by electron modification of Pt by underlying Au, is responsible for the deactivation. This result stresses that high Pt dispersion, necessary for promotion of the dehydrogenation path in HCOOH oxidation, can produce too strong adsorption of intermediates causing deactivation of the catalyst.
PB  - Elsevier
T2  - Journal of Power Sources
T1  - Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate
VL  - 197
SP  - 72
EP  - 79
DO  - 10.1016/j.jpowsour.2011.09.043
ER  - 
@article{
author = "Obradović, Maja and Rogan, Jelena R. and Babić, Biljana M. and Tripković, Amalija and Gautam, A. R. S. and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2012",
abstract = "Pt-Au nanoparticles supported on high area carbon were prepared by simultaneous reduction of Au and Pt precursors and by reduction of Pt precursor on already prepared Au nanoparticles. The first method produced a solid solution of Pt in Au containing similar to 5% Pt with the remaining Pt on the nanoparticles' surface. For the Pt:Au precursor ratio of 1:4 and 1:9, the surface ratio was found to be 0.70:0.30 and 0.55:0.45, respectively. By the second method with the Pt:Au precursors ratio of 1:12, the surface ratio was 0.30:0.70. The voltammetric peaks of Pt-oxide reduction and CO(ads) oxidation demonstrated electronic modification of Pt by Au in all catalysts. With decreasing Pt:Au surface ratio the activity for HCOOH oxidation increases and surface coverage by CO(ads) decreases. The highest activity under potentiodynamic and quasi steady-state conditions without poisoning by CO(ads) was observed for the catalyst with the lowest Pt:Au surface ratio. Chronoamperometic test showed that its high catalytic activity is associated with a high deactivation rate. It was postulated that too strong adsorption of a reactive or non-reactive intermediate caused by electron modification of Pt by underlying Au, is responsible for the deactivation. This result stresses that high Pt dispersion, necessary for promotion of the dehydrogenation path in HCOOH oxidation, can produce too strong adsorption of intermediates causing deactivation of the catalyst.",
publisher = "Elsevier",
journal = "Journal of Power Sources",
title = "Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate",
volume = "197",
pages = "72-79",
doi = "10.1016/j.jpowsour.2011.09.043"
}
Obradović, M., Rogan, J. R., Babić, B. M., Tripković, A., Gautam, A. R. S., Radmilović, V. R.,& Gojković, S. Lj.. (2012). Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate. in Journal of Power Sources
Elsevier., 197, 72-79.
https://doi.org/10.1016/j.jpowsour.2011.09.043
Obradović M, Rogan JR, Babić BM, Tripković A, Gautam ARS, Radmilović VR, Gojković SL. Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate. in Journal of Power Sources. 2012;197:72-79.
doi:10.1016/j.jpowsour.2011.09.043 .
Obradović, Maja, Rogan, Jelena R., Babić, Biljana M., Tripković, Amalija, Gautam, A. R. S., Radmilović, Velimir R., Gojković, Snežana Lj., "Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate" in Journal of Power Sources, 197 (2012):72-79,
https://doi.org/10.1016/j.jpowsour.2011.09.043 . .
44
39
48

Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support

Vukovic, Goran D.; Obradović, Maja; Marinković, Aleksandar D.; Rogan, Jelena R.; Uskoković, Petar S.; Radmilović, Velimir R.; Gojković, Snežana Lj.

(Elsevier Science Sa, Lausanne, 2011)

TY  - JOUR
AU  - Vukovic, Goran D.
AU  - Obradović, Maja
AU  - Marinković, Aleksandar D.
AU  - Rogan, Jelena R.
AU  - Uskoković, Petar S.
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2011
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/801
AB  - Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles prepared by the microwave-assisted polyol method. The MWCNTs were pretreated by chemical oxidation (o-MWCNTs) followed by modification by ethylenediamine (eda-MWCNTs). Characterization of both oxidized and eda-modified materials by UV-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the modification by eda leads to (i) agglomeration of the MWCNTs, (ii) a decrease in the capacitance of the material and (iii) reduced rate of electron transfer between the MWCNTs and solution species. However, the Pt loading of Pt/o-MWCNTs was only 2 mass% while the loading of Pt/eda-MWCNTs was 20 mass%. Much higher efficiency of Pt deposition on eda-MWCNTs than on o-MWCNTs was ascribed to the shift in pH(pzc) value of the MWCNT surface from 2.43 to 5.91 upon modification by eda. Transmission electron microscopy revealed that the mean diameter of the Pt particles in Pt/eda-MWCNTs is 2.5 +/- 0.5 nm and that their distribution on the support is homogenous with no evidence of pronounced particle agglomeration. Cyclic voltammetry of a Pt/eda-MWCNT thin film indicated a clean Pt surface with well-resolved peaks characteristic of polycrystalline Pt. Its electrocatalytic activity for oxygen reduction was examined and the results corresponded to the commercial Pt nanocatalyst. This study shows that modification of o-MWCNTs by eda helps to achieve homogenous distribution of small Pt nanoparticles and does not impede its electrocatalytic activity.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support
VL  - 130
IS  - 1-2
SP  - 657
EP  - 664
DO  - 10.1016/j.matchemphys.2011.07.046
ER  - 
@article{
author = "Vukovic, Goran D. and Obradović, Maja and Marinković, Aleksandar D. and Rogan, Jelena R. and Uskoković, Petar S. and Radmilović, Velimir R. and Gojković, Snežana Lj.",
year = "2011",
abstract = "Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles prepared by the microwave-assisted polyol method. The MWCNTs were pretreated by chemical oxidation (o-MWCNTs) followed by modification by ethylenediamine (eda-MWCNTs). Characterization of both oxidized and eda-modified materials by UV-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the modification by eda leads to (i) agglomeration of the MWCNTs, (ii) a decrease in the capacitance of the material and (iii) reduced rate of electron transfer between the MWCNTs and solution species. However, the Pt loading of Pt/o-MWCNTs was only 2 mass% while the loading of Pt/eda-MWCNTs was 20 mass%. Much higher efficiency of Pt deposition on eda-MWCNTs than on o-MWCNTs was ascribed to the shift in pH(pzc) value of the MWCNT surface from 2.43 to 5.91 upon modification by eda. Transmission electron microscopy revealed that the mean diameter of the Pt particles in Pt/eda-MWCNTs is 2.5 +/- 0.5 nm and that their distribution on the support is homogenous with no evidence of pronounced particle agglomeration. Cyclic voltammetry of a Pt/eda-MWCNT thin film indicated a clean Pt surface with well-resolved peaks characteristic of polycrystalline Pt. Its electrocatalytic activity for oxygen reduction was examined and the results corresponded to the commercial Pt nanocatalyst. This study shows that modification of o-MWCNTs by eda helps to achieve homogenous distribution of small Pt nanoparticles and does not impede its electrocatalytic activity.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support",
volume = "130",
number = "1-2",
pages = "657-664",
doi = "10.1016/j.matchemphys.2011.07.046"
}
Vukovic, G. D., Obradović, M., Marinković, A. D., Rogan, J. R., Uskoković, P. S., Radmilović, V. R.,& Gojković, S. Lj.. (2011). Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 130(1-2), 657-664.
https://doi.org/10.1016/j.matchemphys.2011.07.046
Vukovic GD, Obradović M, Marinković AD, Rogan JR, Uskoković PS, Radmilović VR, Gojković SL. Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support. in Materials Chemistry and Physics. 2011;130(1-2):657-664.
doi:10.1016/j.matchemphys.2011.07.046 .
Vukovic, Goran D., Obradović, Maja, Marinković, Aleksandar D., Rogan, Jelena R., Uskoković, Petar S., Radmilović, Velimir R., Gojković, Snežana Lj., "Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support" in Materials Chemistry and Physics, 130, no. 1-2 (2011):657-664,
https://doi.org/10.1016/j.matchemphys.2011.07.046 . .
2
3
3

The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution

Mentus, Slavko; Mojović, Zorica; Radmilović, Velimir R.

(Serbian Chemical Society, 2009)

TY  - JOUR
AU  - Mentus, Slavko
AU  - Mojović, Zorica
AU  - Radmilović, Velimir R.
PY  - 2009
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/499
AB  - The incorporation of platinum into the cavities of NaX zeolite was realized by impregnation and thermal decomposition of the organometallic compound Pt(II)-acetylacetonate dissolved in acetone. A high dispersion of platinum to predominantly mono-atomic particles was achieved thanks to the tight fit of the Pt(II)-acetylacetonate molecules in the aperture of the zeolite supercage. Using the high angle annular dark field imaging technique of HRTEM, individual Pt particles situated within the zeolite crystals were, for the first time, clearly visible. This offers new possibilities of studying the distribution of incorporated metal particles along the crystal depth.
AB  - Platina je ugrađena u kaveze zeolita NaX impregnacijom i termalnim razlaganjem organometalnog jedinjenja Pt(II)-acetilacetonata, rastvrenog u acetonu. Visoka disperznost platine pretežno u vidu jednoatomnih čestica, postignuta je zahvaljujući bliskosti dimenzija molekule Pt(II)-acetilacetonata i prečnika ulaznog otvora supekaveza zeolita. Tehnikom širokougaone difrakcije i tamnog polja ultravisokorezolutivne elektronske mikroskopije, prvi put su učinjene vidljivim individualne čestice platine smeštene unutar kristala zeolita, što otvara nove mogućnosti u proučavanju raspodele ugrađenih metalnih čestica po dubini kristala.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution
T1  - Zeolit NaX kao templat za dobijanje monoatomski dispergovane platine impregnacijom sa rastvorom Pt(II)-acetilacetonata u acetonu
VL  - 74
IS  - 10
SP  - 1113
EP  - 1123
DO  - 10.2298/JSC0910113M
ER  - 
@article{
author = "Mentus, Slavko and Mojović, Zorica and Radmilović, Velimir R.",
year = "2009",
abstract = "The incorporation of platinum into the cavities of NaX zeolite was realized by impregnation and thermal decomposition of the organometallic compound Pt(II)-acetylacetonate dissolved in acetone. A high dispersion of platinum to predominantly mono-atomic particles was achieved thanks to the tight fit of the Pt(II)-acetylacetonate molecules in the aperture of the zeolite supercage. Using the high angle annular dark field imaging technique of HRTEM, individual Pt particles situated within the zeolite crystals were, for the first time, clearly visible. This offers new possibilities of studying the distribution of incorporated metal particles along the crystal depth., Platina je ugrađena u kaveze zeolita NaX impregnacijom i termalnim razlaganjem organometalnog jedinjenja Pt(II)-acetilacetonata, rastvrenog u acetonu. Visoka disperznost platine pretežno u vidu jednoatomnih čestica, postignuta je zahvaljujući bliskosti dimenzija molekule Pt(II)-acetilacetonata i prečnika ulaznog otvora supekaveza zeolita. Tehnikom širokougaone difrakcije i tamnog polja ultravisokorezolutivne elektronske mikroskopije, prvi put su učinjene vidljivim individualne čestice platine smeštene unutar kristala zeolita, što otvara nove mogućnosti u proučavanju raspodele ugrađenih metalnih čestica po dubini kristala.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution, Zeolit NaX kao templat za dobijanje monoatomski dispergovane platine impregnacijom sa rastvorom Pt(II)-acetilacetonata u acetonu",
volume = "74",
number = "10",
pages = "1113-1123",
doi = "10.2298/JSC0910113M"
}
Mentus, S., Mojović, Z.,& Radmilović, V. R.. (2009). The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 74(10), 1113-1123.
https://doi.org/10.2298/JSC0910113M
Mentus S, Mojović Z, Radmilović VR. The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution. in Journal of the Serbian Chemical Society. 2009;74(10):1113-1123.
doi:10.2298/JSC0910113M .
Mentus, Slavko, Mojović, Zorica, Radmilović, Velimir R., "The use of NaX zeolite as a template to obtain a mono-atomic pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution" in Journal of the Serbian Chemical Society, 74, no. 10 (2009):1113-1123,
https://doi.org/10.2298/JSC0910113M . .
9
10
11

Structural effects of metallic chromium on its electrochemical behavior

Jegdić, Bore; Dražić, Dragutin M.; Popić, Jovan P.; Radmilović, Velimir R.

(Serbian Chemical Society, 2007)

TY  - JOUR
AU  - Jegdić, Bore
AU  - Dražić, Dragutin M.
AU  - Popić, Jovan P.
AU  - Radmilović, Velimir R.
PY  - 2007
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/311
AB  - Chromium dissolution in aqueous sulfuric acid solution of pH 1 was studied electrochemically on chromium electrodes with different crystallographic structures. A slow potentiodynamic method was used for the electrochemical measurements in deaerated solutions (purged with nitrogen),while the Cr(III) ions in the solution after the corrosion were determined by atomic absorption spectrometry. Three electrode materials with a very dominant crystallite orientation resembling single crystal structures (i.e., 111 and 110) confirmed by the electron backscattering diffraction (EBSD), were used in the experiments. The (111) structures were somewhat more active electrochemically (both anodic and cathodic) than the (110) structure. However, Cr electrochemically deposited in standard plating bath, assumed from literature data to has also the (111) structure, was more than 4 times active for anodic dissolution and, by the same number, less active for cathodic hydrogen evolution. The concentrations of Cr(III) ions determined in the solution after definite times of corrosion of all the materials showed almost two times larger dissolution rates than observed electrochemically by three different electrochemical methods (Wagner-Traud, Stern-Geary, electrochemical impedance spectroscopy). This is explained by the simultaneous occurrence of potential independent chemical dissolution of Cr, by a direct reaction of metallic Cr with H2O molecules, proposed a long time ago by Kolotyrkin and coworkers. .
AB  - Proučavano je elektrohemijsko rastvaranje hroma u vodenim rastvorima sumporne kiseline (pH 1) sa elektrodama od hroma različite kristalografske strukture. Primenjena je spora potenciodinamička metoda u deaeriranim rastvorima (uz provođenje azota) na 25°C, a joni Cr(III) u rastvoru posle određenog vremena korozije određivani su atomskom apsorpcionom spektroskopijom. U eksperimentima su upotrebljena tri elektrodna materijala sa dominantnim kristalnim strukturama koje podsećaju na mono kristalne (tj. 111 i 110), a što je potvrđeno EBSD metodom. Nađeno je da je struktura (111) elektrohemijski aktivnija (i anodno i katodno) od strukture (110). Međutim, elektrolitički istaložen Cr iz standardnog kupatila za hromiranje, a koji na osnovu literaturnih podataka ima strukturu (111) bio je oko 4 puta aktivniji u anodnoj reakciji i isto toliko manje aktivan za katodnu reakciju izdvajanja vodonika. Analitički određivane koncentracije Cr(III) jona u rastvoru posle određenog vremena spontane korozije pokazivale su dva puta veće koncentracije nego što bi se očekivalo na osnovu brzine elektrohemijske korozije, određivanih metodama Wagner-Traud, Stern-Geary i elektrohemijskom impedansnom spektroskopijom. Ovo je objašnjeno jednovremenim odigravanjem i elektrohemijske reakcije i hemijske reakcije direktnog reagovanja metalnog Cr sa molekulima vode, po mehanizmu predloženom od Kolotirkina i saradnika. .
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Structural effects of metallic chromium on its electrochemical behavior
T1  - Uticaj strukture metalnog hroma na njegovo elektrohemijsko ponašanje
VL  - 72
IS  - 6
SP  - 563
EP  - 578
DO  - 10.2298/JSC0706563J
ER  - 
@article{
author = "Jegdić, Bore and Dražić, Dragutin M. and Popić, Jovan P. and Radmilović, Velimir R.",
year = "2007",
abstract = "Chromium dissolution in aqueous sulfuric acid solution of pH 1 was studied electrochemically on chromium electrodes with different crystallographic structures. A slow potentiodynamic method was used for the electrochemical measurements in deaerated solutions (purged with nitrogen),while the Cr(III) ions in the solution after the corrosion were determined by atomic absorption spectrometry. Three electrode materials with a very dominant crystallite orientation resembling single crystal structures (i.e., 111 and 110) confirmed by the electron backscattering diffraction (EBSD), were used in the experiments. The (111) structures were somewhat more active electrochemically (both anodic and cathodic) than the (110) structure. However, Cr electrochemically deposited in standard plating bath, assumed from literature data to has also the (111) structure, was more than 4 times active for anodic dissolution and, by the same number, less active for cathodic hydrogen evolution. The concentrations of Cr(III) ions determined in the solution after definite times of corrosion of all the materials showed almost two times larger dissolution rates than observed electrochemically by three different electrochemical methods (Wagner-Traud, Stern-Geary, electrochemical impedance spectroscopy). This is explained by the simultaneous occurrence of potential independent chemical dissolution of Cr, by a direct reaction of metallic Cr with H2O molecules, proposed a long time ago by Kolotyrkin and coworkers. ., Proučavano je elektrohemijsko rastvaranje hroma u vodenim rastvorima sumporne kiseline (pH 1) sa elektrodama od hroma različite kristalografske strukture. Primenjena je spora potenciodinamička metoda u deaeriranim rastvorima (uz provođenje azota) na 25°C, a joni Cr(III) u rastvoru posle određenog vremena korozije određivani su atomskom apsorpcionom spektroskopijom. U eksperimentima su upotrebljena tri elektrodna materijala sa dominantnim kristalnim strukturama koje podsećaju na mono kristalne (tj. 111 i 110), a što je potvrđeno EBSD metodom. Nađeno je da je struktura (111) elektrohemijski aktivnija (i anodno i katodno) od strukture (110). Međutim, elektrolitički istaložen Cr iz standardnog kupatila za hromiranje, a koji na osnovu literaturnih podataka ima strukturu (111) bio je oko 4 puta aktivniji u anodnoj reakciji i isto toliko manje aktivan za katodnu reakciju izdvajanja vodonika. Analitički određivane koncentracije Cr(III) jona u rastvoru posle određenog vremena spontane korozije pokazivale su dva puta veće koncentracije nego što bi se očekivalo na osnovu brzine elektrohemijske korozije, određivanih metodama Wagner-Traud, Stern-Geary i elektrohemijskom impedansnom spektroskopijom. Ovo je objašnjeno jednovremenim odigravanjem i elektrohemijske reakcije i hemijske reakcije direktnog reagovanja metalnog Cr sa molekulima vode, po mehanizmu predloženom od Kolotirkina i saradnika. .",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Structural effects of metallic chromium on its electrochemical behavior, Uticaj strukture metalnog hroma na njegovo elektrohemijsko ponašanje",
volume = "72",
number = "6",
pages = "563-578",
doi = "10.2298/JSC0706563J"
}
Jegdić, B., Dražić, D. M., Popić, J. P.,& Radmilović, V. R.. (2007). Structural effects of metallic chromium on its electrochemical behavior. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 72(6), 563-578.
https://doi.org/10.2298/JSC0706563J
Jegdić B, Dražić DM, Popić JP, Radmilović VR. Structural effects of metallic chromium on its electrochemical behavior. in Journal of the Serbian Chemical Society. 2007;72(6):563-578.
doi:10.2298/JSC0706563J .
Jegdić, Bore, Dražić, Dragutin M., Popić, Jovan P., Radmilović, Velimir R., "Structural effects of metallic chromium on its electrochemical behavior" in Journal of the Serbian Chemical Society, 72, no. 6 (2007):563-578,
https://doi.org/10.2298/JSC0706563J . .

The effect of reversing current deposition on the apparent density of electrolytic copper powder

Popov, Konstantin I.; Pavlović, Ljubica; Ivanović, Evica; Radmilović, Velimir R.; Pavlović, Miomir

(Serbian Chemical Society, 2002)

TY  - JOUR
AU  - Popov, Konstantin I.
AU  - Pavlović, Ljubica
AU  - Ivanović, Evica
AU  - Radmilović, Velimir R.
AU  - Pavlović, Miomir
PY  - 2002
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/62
AB  - The possibility of depositing copper powders with different apparent density by changing the shape of reversing current wave is shown. The morphology and crystallinity of powder particles can be varied considerably by changing shape of the reversing current wave and, hence, the apparent density of powders. The relation of apparent density with particle morphology and structure was illustrated.
AB  - U radu je pokazana mogućnost dobijanja bakarnih prahova različitih nasipnih masa promenom oblika talasa reversne struje. Uspostavljena je zadovoljavajuća veza između morfologije i strukture čestica praha bakra i nasipne mase praha.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - The effect of reversing current deposition on the apparent density of electrolytic copper powder
T1  - Uticaj reversne struje na nasipnu masu pri elektrolitičkom taloženju bakarnog praha
VL  - 67
IS  - 1
SP  - 61
EP  - 67
DO  - 10.2298/JSC0201061P
ER  - 
@article{
author = "Popov, Konstantin I. and Pavlović, Ljubica and Ivanović, Evica and Radmilović, Velimir R. and Pavlović, Miomir",
year = "2002",
abstract = "The possibility of depositing copper powders with different apparent density by changing the shape of reversing current wave is shown. The morphology and crystallinity of powder particles can be varied considerably by changing shape of the reversing current wave and, hence, the apparent density of powders. The relation of apparent density with particle morphology and structure was illustrated., U radu je pokazana mogućnost dobijanja bakarnih prahova različitih nasipnih masa promenom oblika talasa reversne struje. Uspostavljena je zadovoljavajuća veza između morfologije i strukture čestica praha bakra i nasipne mase praha.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "The effect of reversing current deposition on the apparent density of electrolytic copper powder, Uticaj reversne struje na nasipnu masu pri elektrolitičkom taloženju bakarnog praha",
volume = "67",
number = "1",
pages = "61-67",
doi = "10.2298/JSC0201061P"
}
Popov, K. I., Pavlović, L., Ivanović, E., Radmilović, V. R.,& Pavlović, M.. (2002). The effect of reversing current deposition on the apparent density of electrolytic copper powder. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 67(1), 61-67.
https://doi.org/10.2298/JSC0201061P
Popov KI, Pavlović L, Ivanović E, Radmilović VR, Pavlović M. The effect of reversing current deposition on the apparent density of electrolytic copper powder. in Journal of the Serbian Chemical Society. 2002;67(1):61-67.
doi:10.2298/JSC0201061P .
Popov, Konstantin I., Pavlović, Ljubica, Ivanović, Evica, Radmilović, Velimir R., Pavlović, Miomir, "The effect of reversing current deposition on the apparent density of electrolytic copper powder" in Journal of the Serbian Chemical Society, 67, no. 1 (2002):61-67,
https://doi.org/10.2298/JSC0201061P . .
15
14
15