Ristic, Mirjana D.

Link to this page

Authority KeyName Variants
e801d5c9-3787-4821-aa35-d88ad68c75dd
  • Ristic, Mirjana D. (3)
  • Ristic, Mirjana (1)

Author's Bibliography

Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic

Dervisevic, Irma; Minić, Duško; Kamberovic, Zeljko; Ćosović, Vladan; Ristic, Mirjana

(Springer Heidelberg, Heidelberg, 2013)

TY  - JOUR
AU  - Dervisevic, Irma
AU  - Minić, Duško
AU  - Kamberovic, Zeljko
AU  - Ćosović, Vladan
AU  - Ristic, Mirjana
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1324
AB  - In this paper, we have analyzed parts of printed circuit board (PCB) and liquid crystal display (LCD) screens of mobile phones and computers, quantitative and qualitative chemical compositions of individual components, and complete PCBs were determined. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) methods were used to determine the temperatures of phase transformations, whereas qualitative and quantitative compositions of the samples were determined by X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) analyses. The microstructure of samples was studied by optical microscopy. Based on results of the analysis, a procedure for recycling PCBs is proposed. The emphasis was on the effects that can be achieved in the recycling process by extraction of some parts before the melting process. In addition, newly developed materials can be an adequate substitute for some of the dangerous and harmful materials, such as lead and arsenic are proposed, which is in accordance with the European Union (EU) Restriction of the use of certain hazardous substances (RoHS) directive as well as some alternative materials for use in the electronics industry instead of gold and gold alloys.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic
VL  - 20
IS  - 6
SP  - 4278
EP  - 4292
DO  - 10.1007/s11356-012-1448-1
ER  - 
@article{
author = "Dervisevic, Irma and Minić, Duško and Kamberovic, Zeljko and Ćosović, Vladan and Ristic, Mirjana",
year = "2013",
abstract = "In this paper, we have analyzed parts of printed circuit board (PCB) and liquid crystal display (LCD) screens of mobile phones and computers, quantitative and qualitative chemical compositions of individual components, and complete PCBs were determined. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) methods were used to determine the temperatures of phase transformations, whereas qualitative and quantitative compositions of the samples were determined by X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) analyses. The microstructure of samples was studied by optical microscopy. Based on results of the analysis, a procedure for recycling PCBs is proposed. The emphasis was on the effects that can be achieved in the recycling process by extraction of some parts before the melting process. In addition, newly developed materials can be an adequate substitute for some of the dangerous and harmful materials, such as lead and arsenic are proposed, which is in accordance with the European Union (EU) Restriction of the use of certain hazardous substances (RoHS) directive as well as some alternative materials for use in the electronics industry instead of gold and gold alloys.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic",
volume = "20",
number = "6",
pages = "4278-4292",
doi = "10.1007/s11356-012-1448-1"
}
Dervisevic, I., Minić, D., Kamberovic, Z., Ćosović, V.,& Ristic, M.. (2013). Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 20(6), 4278-4292.
https://doi.org/10.1007/s11356-012-1448-1
Dervisevic I, Minić D, Kamberovic Z, Ćosović V, Ristic M. Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic. in Environmental Science and Pollution Research. 2013;20(6):4278-4292.
doi:10.1007/s11356-012-1448-1 .
Dervisevic, Irma, Minić, Duško, Kamberovic, Zeljko, Ćosović, Vladan, Ristic, Mirjana, "Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic" in Environmental Science and Pollution Research, 20, no. 6 (2013):4278-4292,
https://doi.org/10.1007/s11356-012-1448-1 . .
19
11
17

Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study

Milosavljevic, Nedeljko B.; Ristic, Mirjana D.; Peric-Grujic, Aleksandra A.; Filipovic, Jovanka M.; Štrbac, Svetlana; Rakočević, Zlatko Lj.; Kalagasidis Krušić, Melina

(Elsevier, 2011)

TY  - JOUR
AU  - Milosavljevic, Nedeljko B.
AU  - Ristic, Mirjana D.
AU  - Peric-Grujic, Aleksandra A.
AU  - Filipovic, Jovanka M.
AU  - Štrbac, Svetlana
AU  - Rakočević, Zlatko Lj.
AU  - Kalagasidis Krušić, Melina
PY  - 2011
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/800
AB  - A removal of Cu2+ ions from aqueous solutions onto hydrogels of chitosan. itaconic and methacrylic acid has been investigated using batch adsorption technique. The extent of adsorption was investigated as a function of pH, adsorbent dose, initial metal ion concentration, contact time and temperature. The FIR spectra showed that -NH2, -OH and -COOH groups are involved in the Cu2+ ions adsorption. The surface topography changes were observed by AFM, where the phase images indicated that sorption takes place on the surface of the hydrogel and in the bulk. Pseudo-first order, pseudo-second order and intraparticle diffusion models were analyzed and showed that the Cu2+ ions adsorption followed pseudo-second order kinetics. The equilibrium data were analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms and the best interpretation was given by Redlich-Peterson. The adsorption capacity was found to be 122.59 mg/g, based on the non-linear Langmuir isotherm. Based on the separation factor. R-L, the Cu2+ ion adsorption is favorable, while the low activation energies indicate physisorption. Desorption experiments, done with a nitric acid, showed that the investigated hydrogels could be reused without significant losses of the initial properties even after three adsorption-sorption cycles.
PB  - Elsevier
T2  - Colloids and Surfaces A-Physicochemical and Engineering Aspects
T1  - Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study
VL  - 388
IS  - 1-3
SP  - 59
EP  - 69
DO  - 10.1016/j.colsurfa.2011.08.011
ER  - 
@article{
author = "Milosavljevic, Nedeljko B. and Ristic, Mirjana D. and Peric-Grujic, Aleksandra A. and Filipovic, Jovanka M. and Štrbac, Svetlana and Rakočević, Zlatko Lj. and Kalagasidis Krušić, Melina",
year = "2011",
abstract = "A removal of Cu2+ ions from aqueous solutions onto hydrogels of chitosan. itaconic and methacrylic acid has been investigated using batch adsorption technique. The extent of adsorption was investigated as a function of pH, adsorbent dose, initial metal ion concentration, contact time and temperature. The FIR spectra showed that -NH2, -OH and -COOH groups are involved in the Cu2+ ions adsorption. The surface topography changes were observed by AFM, where the phase images indicated that sorption takes place on the surface of the hydrogel and in the bulk. Pseudo-first order, pseudo-second order and intraparticle diffusion models were analyzed and showed that the Cu2+ ions adsorption followed pseudo-second order kinetics. The equilibrium data were analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms and the best interpretation was given by Redlich-Peterson. The adsorption capacity was found to be 122.59 mg/g, based on the non-linear Langmuir isotherm. Based on the separation factor. R-L, the Cu2+ ion adsorption is favorable, while the low activation energies indicate physisorption. Desorption experiments, done with a nitric acid, showed that the investigated hydrogels could be reused without significant losses of the initial properties even after three adsorption-sorption cycles.",
publisher = "Elsevier",
journal = "Colloids and Surfaces A-Physicochemical and Engineering Aspects",
title = "Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study",
volume = "388",
number = "1-3",
pages = "59-69",
doi = "10.1016/j.colsurfa.2011.08.011"
}
Milosavljevic, N. B., Ristic, M. D., Peric-Grujic, A. A., Filipovic, J. M., Štrbac, S., Rakočević, Z. Lj.,& Kalagasidis Krušić, M.. (2011). Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. in Colloids and Surfaces A-Physicochemical and Engineering Aspects
Elsevier., 388(1-3), 59-69.
https://doi.org/10.1016/j.colsurfa.2011.08.011
Milosavljevic NB, Ristic MD, Peric-Grujic AA, Filipovic JM, Štrbac S, Rakočević ZL, Kalagasidis Krušić M. Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. in Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2011;388(1-3):59-69.
doi:10.1016/j.colsurfa.2011.08.011 .
Milosavljevic, Nedeljko B., Ristic, Mirjana D., Peric-Grujic, Aleksandra A., Filipovic, Jovanka M., Štrbac, Svetlana, Rakočević, Zlatko Lj., Kalagasidis Krušić, Melina, "Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study" in Colloids and Surfaces A-Physicochemical and Engineering Aspects, 388, no. 1-3 (2011):59-69,
https://doi.org/10.1016/j.colsurfa.2011.08.011 . .
84
68
91

Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid

Milosavljevic, Nedeljko B.; Ristic, Mirjana D.; Peric-Grujic, Aleksandra A.; Filipovic, Jovanka M.; Štrbac, Svetlana; Rakočević, Zlatko Lj.; Kalagasidis Krušić, Melina

(Elsevier, 2011)

TY  - JOUR
AU  - Milosavljevic, Nedeljko B.
AU  - Ristic, Mirjana D.
AU  - Peric-Grujic, Aleksandra A.
AU  - Filipovic, Jovanka M.
AU  - Štrbac, Svetlana
AU  - Rakočević, Zlatko Lj.
AU  - Kalagasidis Krušić, Melina
PY  - 2011
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/805
AB  - Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudosecond order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.
PB  - Elsevier
T2  - Journal of Hazardous Materials
T1  - Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid
VL  - 192
IS  - 2
SP  - 846
EP  - 854
DO  - 10.1016/j.jhazmat.2011.05.093
ER  - 
@article{
author = "Milosavljevic, Nedeljko B. and Ristic, Mirjana D. and Peric-Grujic, Aleksandra A. and Filipovic, Jovanka M. and Štrbac, Svetlana and Rakočević, Zlatko Lj. and Kalagasidis Krušić, Melina",
year = "2011",
abstract = "Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudosecond order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.",
publisher = "Elsevier",
journal = "Journal of Hazardous Materials",
title = "Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid",
volume = "192",
number = "2",
pages = "846-854",
doi = "10.1016/j.jhazmat.2011.05.093"
}
Milosavljevic, N. B., Ristic, M. D., Peric-Grujic, A. A., Filipovic, J. M., Štrbac, S., Rakočević, Z. Lj.,& Kalagasidis Krušić, M.. (2011). Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. in Journal of Hazardous Materials
Elsevier., 192(2), 846-854.
https://doi.org/10.1016/j.jhazmat.2011.05.093
Milosavljevic NB, Ristic MD, Peric-Grujic AA, Filipovic JM, Štrbac S, Rakočević ZL, Kalagasidis Krušić M. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. in Journal of Hazardous Materials. 2011;192(2):846-854.
doi:10.1016/j.jhazmat.2011.05.093 .
Milosavljevic, Nedeljko B., Ristic, Mirjana D., Peric-Grujic, Aleksandra A., Filipovic, Jovanka M., Štrbac, Svetlana, Rakočević, Zlatko Lj., Kalagasidis Krušić, Melina, "Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid" in Journal of Hazardous Materials, 192, no. 2 (2011):846-854,
https://doi.org/10.1016/j.jhazmat.2011.05.093 . .
58
43
56

Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution

Milosavljevic, Nedeljko B.; Ristic, Mirjana D.; Peric-Grujic, Aleksandra A.; Filipovic, Jovanka M.; Štrbac, Svetlana; Rakočević, Zlatko Lj.; Kalagasidis Krušić, Melina

(Elsevier Science Sa, Lausanne, 2010)

TY  - JOUR
AU  - Milosavljevic, Nedeljko B.
AU  - Ristic, Mirjana D.
AU  - Peric-Grujic, Aleksandra A.
AU  - Filipovic, Jovanka M.
AU  - Štrbac, Svetlana
AU  - Rakočević, Zlatko Lj.
AU  - Kalagasidis Krušić, Melina
PY  - 2010
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/687
AB  - A hydrogel has been synthesized by ionic crosslinking of chitosan (Ch) with itaconic acid (IA), followed by a free radical polymerization and crosslinking of Ch/IA network by adding methacrylic acid and the crosslinker. The resulting material (Ch/IA/MAA hydrogel) was characterized by spectral (Fourier transform infrared (FTIR)), thermal (thermogravimetric analysis (TGA)) and structural (SEM/EDX and atomic force microscopy (AFM)) analyses. The prepared hydrogel was investigated as potential adsorbent for removal of Cd2+ ions from aqueous solution. The effect of various physico-chemical parameters such as pH, adsorbent dosage, adsorbate concentration and contact time was studied in batch experiments. The results of spectral analyses of Cd-loaded hydrogel have shown that active functional groups are -NH2, -OH and -COOH. SEM/EDX analysis and AFM surface topography and phase images indicated that apart from the adsorption on the surface of the hydrogel, sorption takes place in the bulk, as well. The experimental kinetic and equilibrium data were better fitted by pseudo-second order kinetic model and Langmuir adsorption isotherm. The parameters obtained in thermodynamic studies showed that the adsorption of Cd2+ on Ch/IA/MAA hydrogel was spontaneous and exothermic in nature. Desorption studies were carried out using acid leaching (HNO3) and it has been shown that the regenerated hydrogel can be reused three times without any loss of adsorption capacity. The maximum adsorption of 285.7 mg/g has been obtained at pH 5.5 and the results of adsorption/desorption experiments implies that the Ch/IA/MAA hydrogel may be used as efficient sorbent for removal of Cd2+ ions from aqueous solution.
PB  - Elsevier Science Sa, Lausanne
T2  - Chemical Engineering Journal
T1  - Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution
VL  - 165
IS  - 2
SP  - 554
EP  - 562
DO  - 10.1016/j.cej.2010.09.072
ER  - 
@article{
author = "Milosavljevic, Nedeljko B. and Ristic, Mirjana D. and Peric-Grujic, Aleksandra A. and Filipovic, Jovanka M. and Štrbac, Svetlana and Rakočević, Zlatko Lj. and Kalagasidis Krušić, Melina",
year = "2010",
abstract = "A hydrogel has been synthesized by ionic crosslinking of chitosan (Ch) with itaconic acid (IA), followed by a free radical polymerization and crosslinking of Ch/IA network by adding methacrylic acid and the crosslinker. The resulting material (Ch/IA/MAA hydrogel) was characterized by spectral (Fourier transform infrared (FTIR)), thermal (thermogravimetric analysis (TGA)) and structural (SEM/EDX and atomic force microscopy (AFM)) analyses. The prepared hydrogel was investigated as potential adsorbent for removal of Cd2+ ions from aqueous solution. The effect of various physico-chemical parameters such as pH, adsorbent dosage, adsorbate concentration and contact time was studied in batch experiments. The results of spectral analyses of Cd-loaded hydrogel have shown that active functional groups are -NH2, -OH and -COOH. SEM/EDX analysis and AFM surface topography and phase images indicated that apart from the adsorption on the surface of the hydrogel, sorption takes place in the bulk, as well. The experimental kinetic and equilibrium data were better fitted by pseudo-second order kinetic model and Langmuir adsorption isotherm. The parameters obtained in thermodynamic studies showed that the adsorption of Cd2+ on Ch/IA/MAA hydrogel was spontaneous and exothermic in nature. Desorption studies were carried out using acid leaching (HNO3) and it has been shown that the regenerated hydrogel can be reused three times without any loss of adsorption capacity. The maximum adsorption of 285.7 mg/g has been obtained at pH 5.5 and the results of adsorption/desorption experiments implies that the Ch/IA/MAA hydrogel may be used as efficient sorbent for removal of Cd2+ ions from aqueous solution.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Chemical Engineering Journal",
title = "Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution",
volume = "165",
number = "2",
pages = "554-562",
doi = "10.1016/j.cej.2010.09.072"
}
Milosavljevic, N. B., Ristic, M. D., Peric-Grujic, A. A., Filipovic, J. M., Štrbac, S., Rakočević, Z. Lj.,& Kalagasidis Krušić, M.. (2010). Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. in Chemical Engineering Journal
Elsevier Science Sa, Lausanne., 165(2), 554-562.
https://doi.org/10.1016/j.cej.2010.09.072
Milosavljevic NB, Ristic MD, Peric-Grujic AA, Filipovic JM, Štrbac S, Rakočević ZL, Kalagasidis Krušić M. Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. in Chemical Engineering Journal. 2010;165(2):554-562.
doi:10.1016/j.cej.2010.09.072 .
Milosavljevic, Nedeljko B., Ristic, Mirjana D., Peric-Grujic, Aleksandra A., Filipovic, Jovanka M., Štrbac, Svetlana, Rakočević, Zlatko Lj., Kalagasidis Krušić, Melina, "Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution" in Chemical Engineering Journal, 165, no. 2 (2010):554-562,
https://doi.org/10.1016/j.cej.2010.09.072 . .
46
44
46