Maletić, Slavica

Link to this page

Authority KeyName Variants
996c4002-bcf1-408c-b0f4-14aa648fbc06
  • Maletić, Slavica (1)
Projects

Author's Bibliography

Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation

Stojadinović, Stevan; Radić, Nenad; Grbić, Boško; Maletić, Slavica; Stefanov, Plamen; Pacevski, Aleksandar; Vasilić, Rastko

(Elsevier, 2016)

TY  - JOUR
AU  - Stojadinović, Stevan
AU  - Radić, Nenad
AU  - Grbić, Boško
AU  - Maletić, Slavica
AU  - Stefanov, Plamen
AU  - Pacevski, Aleksandar
AU  - Vasilić, Rastko
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2034
AB  - In this paper, we used plasma electrolytic oxidation (PEO) of titanium in water solution containing 10 g/L Na3PO4 center dot 12H(2)O + 2 g/L Eu2O3 powder for preparation of TiO2:Eu3+ coatings. The surfaces of obtained coatings exhibit a typical PEO porous structure. The energy dispersive X-ray spectroscopy analysis showed that the coatings are mainly composed of Ti, O, P, and Eu; it is observed that Eu content in the coatings increases with PEO time. The X-ray diffraction analysis indicated that the coatings are crystallized and composed of anatase and rutile TiO2 phases, with anatase being the dominant one. X-ray photoelectron spectroscopy revealed that Ti 2p spin-orbit components of TiO2:Eu3+ coatings are shifted towards higher binding energy, with respect to pure TiO2 coatings, suggesting that Eu3+ ions are incorporated into TiO2 lattice. Diffuse reflectance spectroscopy showed that TiO2:Eu3+ coatings exhibit evident red shift with respect to the pure TiO2 coatings. Photoluminescence (PL) emission spectra of TiO2:Eu3+ coatings are characterized by sharp emission bands in orange-red region ascribed to f-f transitions of Eu3+ ions from excited level D-5(0) to lower levels F-7(J) (J=0, 1, 2, 3, and 4). The excitation PL spectra of TiO2:Eu3+ coatings can be divided into two regions: the broad band region from 250 nm to 350 nm associated with charge transfer state of Eu3+ and the series of sharp peaks in the range from 350 nm to 550 rim corresponding to direct excitation of the Eu3+ ions. It is observed that the intensity of peaks in excitation and emission PL spectra increases with the concentration of Eu3+, but the peak positions remain practically unchanged. The ratio of PL emission for electric and magnetic dipole transitions indicates highly asymmetric environment around Eu3+ ions. The photocatalytic activity (PA) of TiO2:Eu3+ coatings is evaluated by measuring the photodegradation of methyl orange under simulated sunlight conditions. It is shown that PEO time, i.e., the amount of Eu3+ incorporated into coatings is an important factor affecting PA; TiO2:Eu3+ coating formed after 1 min of PEO time showed the highest PA.
PB  - Elsevier
T2  - Applied Surface Science
T1  - Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation
VL  - 370
SP  - 218
EP  - 228
DO  - 10.1016/j.apsusc.2016.02.131
ER  - 
@article{
author = "Stojadinović, Stevan and Radić, Nenad and Grbić, Boško and Maletić, Slavica and Stefanov, Plamen and Pacevski, Aleksandar and Vasilić, Rastko",
year = "2016",
abstract = "In this paper, we used plasma electrolytic oxidation (PEO) of titanium in water solution containing 10 g/L Na3PO4 center dot 12H(2)O + 2 g/L Eu2O3 powder for preparation of TiO2:Eu3+ coatings. The surfaces of obtained coatings exhibit a typical PEO porous structure. The energy dispersive X-ray spectroscopy analysis showed that the coatings are mainly composed of Ti, O, P, and Eu; it is observed that Eu content in the coatings increases with PEO time. The X-ray diffraction analysis indicated that the coatings are crystallized and composed of anatase and rutile TiO2 phases, with anatase being the dominant one. X-ray photoelectron spectroscopy revealed that Ti 2p spin-orbit components of TiO2:Eu3+ coatings are shifted towards higher binding energy, with respect to pure TiO2 coatings, suggesting that Eu3+ ions are incorporated into TiO2 lattice. Diffuse reflectance spectroscopy showed that TiO2:Eu3+ coatings exhibit evident red shift with respect to the pure TiO2 coatings. Photoluminescence (PL) emission spectra of TiO2:Eu3+ coatings are characterized by sharp emission bands in orange-red region ascribed to f-f transitions of Eu3+ ions from excited level D-5(0) to lower levels F-7(J) (J=0, 1, 2, 3, and 4). The excitation PL spectra of TiO2:Eu3+ coatings can be divided into two regions: the broad band region from 250 nm to 350 nm associated with charge transfer state of Eu3+ and the series of sharp peaks in the range from 350 nm to 550 rim corresponding to direct excitation of the Eu3+ ions. It is observed that the intensity of peaks in excitation and emission PL spectra increases with the concentration of Eu3+, but the peak positions remain practically unchanged. The ratio of PL emission for electric and magnetic dipole transitions indicates highly asymmetric environment around Eu3+ ions. The photocatalytic activity (PA) of TiO2:Eu3+ coatings is evaluated by measuring the photodegradation of methyl orange under simulated sunlight conditions. It is shown that PEO time, i.e., the amount of Eu3+ incorporated into coatings is an important factor affecting PA; TiO2:Eu3+ coating formed after 1 min of PEO time showed the highest PA.",
publisher = "Elsevier",
journal = "Applied Surface Science",
title = "Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation",
volume = "370",
pages = "218-228",
doi = "10.1016/j.apsusc.2016.02.131"
}
Stojadinović, S., Radić, N., Grbić, B., Maletić, S., Stefanov, P., Pacevski, A.,& Vasilić, R.. (2016). Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. in Applied Surface Science
Elsevier., 370, 218-228.
https://doi.org/10.1016/j.apsusc.2016.02.131
Stojadinović S, Radić N, Grbić B, Maletić S, Stefanov P, Pacevski A, Vasilić R. Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. in Applied Surface Science. 2016;370:218-228.
doi:10.1016/j.apsusc.2016.02.131 .
Stojadinović, Stevan, Radić, Nenad, Grbić, Boško, Maletić, Slavica, Stefanov, Plamen, Pacevski, Aleksandar, Vasilić, Rastko, "Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation" in Applied Surface Science, 370 (2016):218-228,
https://doi.org/10.1016/j.apsusc.2016.02.131 . .
77
57
77