Ranđelović, Branislav

Link to this page

Authority KeyName Variants
orcid::0000-0002-0643-0955
  • Ranđelović, Branislav (4)
Projects

Author's Bibliography

Fractal reconstruction of fiber-reinforced polymer composites

Radović, Ivana; Mitić, Vojislav V.; Stajčić, Aleksandar; Serpa, Cristina; Ribar, Srđan; Ranđelović, Branislav; Vlahović, Branislav

(Belgrade : Serbian Chemical Society, 2021)

TY  - CONF
AU  - Radović, Ivana
AU  - Mitić, Vojislav V.
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Ribar, Srđan
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4899
AB  - Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.
PB  - Belgrade : Serbian Chemical Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
T1  - Fractal reconstruction of fiber-reinforced polymer composites
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_12361
ER  - 
@conference{
author = "Radović, Ivana and Mitić, Vojislav V. and Stajčić, Aleksandar and Serpa, Cristina and Ribar, Srđan and Ranđelović, Branislav and Vlahović, Branislav",
year = "2021",
abstract = "Polymers offer the possibility of different reinforcement incorporation due to a broad range of
chemical structures.Along with this feature, their light weight and processing ease made them
a class of materials that have been applied in construction parts, drug delivery agents or
electronic devices. Epoxy-based composites have used as insulators in microelectronic
devices due to its chemical resistance, good adhesion properties and endurance. As epoxies
have low fracture resistance, they are often reinforced with different kinds of fibers.With
thorough knowledge of the structure, physical properties can be predicted and included in the
processing of future composites, especially that electronic materials minituarization brought
micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical
method that has proved to be efficient in grain interface properties applied on perovskite
ceramic materials.In our study, fiber shape reconstruction and determination of Hausdorff
dimension have been achieved with the application of fractal regression model employed in
software Fractal Real Finder opening a new path for the prediction of reinforcement shape
and size, all with the aim of processing composite materials with desired properties.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing",
title = "Fractal reconstruction of fiber-reinforced polymer composites",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_12361"
}
Radović, I., Mitić, V. V., Stajčić, A., Serpa, C., Ribar, S., Ranđelović, B.,& Vlahović, B.. (2021). Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing
Belgrade : Serbian Chemical Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361
Radović I, Mitić VV, Stajčić A, Serpa C, Ribar S, Ranđelović B, Vlahović B. Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_12361 .
Radović, Ivana, Mitić, Vojislav V., Stajčić, Aleksandar, Serpa, Cristina, Ribar, Srđan, Ranđelović, Branislav, Vlahović, Branislav, "Fractal reconstruction of fiber-reinforced polymer composites" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing (2021):49-49,
https://hdl.handle.net/21.15107/rcub_dais_12361 .

The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics

Mitić, Vojislav V.; Ranđelović, Branislav; Ilić, Ivana; Ribar, Srđan; Chun, An-Lu; Stajčić, Aleksandar; Vlahović, Branislav

(World Scientific Publishing Co, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Ribar, Srđan
AU  - Chun, An-Lu
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4809
AB  - After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.
PB  - World Scientific Publishing Co
T2  - International Journal of Modern Physics B
T1  - The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics
VL  - 35
IS  - 7
SP  - 2150103
DO  - 10.1142/S0217979221501034
ER  - 
@article{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ilić, Ivana and Ribar, Srđan and Chun, An-Lu and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.",
publisher = "World Scientific Publishing Co",
journal = "International Journal of Modern Physics B",
title = "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics",
volume = "35",
number = "7",
pages = "2150103",
doi = "10.1142/S0217979221501034"
}
Mitić, V. V., Ranđelović, B., Ilić, I., Ribar, S., Chun, A., Stajčić, A.,& Vlahović, B.. (2021). The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B
World Scientific Publishing Co., 35(7), 2150103.
https://doi.org/10.1142/S0217979221501034
Mitić VV, Ranđelović B, Ilić I, Ribar S, Chun A, Stajčić A, Vlahović B. The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B. 2021;35(7):2150103.
doi:10.1142/S0217979221501034 .
Mitić, Vojislav V., Ranđelović, Branislav, Ilić, Ivana, Ribar, Srđan, Chun, An-Lu, Stajčić, Aleksandar, Vlahović, Branislav, "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics" in International Journal of Modern Physics B, 35, no. 7 (2021):2150103,
https://doi.org/10.1142/S0217979221501034 . .
7
3
7

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4837
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
VL  - 570
IS  - 1
SP  - 145
EP  - 152
DO  - 10.1080/00150193.2020.1839265
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
volume = "570",
number = "1",
pages = "145-152",
doi = "10.1080/00150193.2020.1839265"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 . .
15
4
15

Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure

Radović, Ivan M.; Stajčić, Aleksandar; Mitić, Vojislav V.; Serpa, C.; Paunović, V.; Ranđelović, Branislav

(Institute of Electrical and Electronics Engineers Inc., 2021)

TY  - CONF
AU  - Radović, Ivan M.
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav V.
AU  - Serpa, C.
AU  - Paunović, V.
AU  - Ranđelović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4843
AB  - In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.
PB  - Institute of Electrical and Electronics Engineers Inc.
C3  - 32nd IEEE International Conference on Microelectronics, MIEL 2021
T1  - Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure
SP  - 203
EP  - 206
DO  - 10.1109/MIEL52794.2021.9569054
ER  - 
@conference{
author = "Radović, Ivan M. and Stajčić, Aleksandar and Mitić, Vojislav V. and Serpa, C. and Paunović, V. and Ranđelović, Branislav",
year = "2021",
abstract = "In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
journal = "32nd IEEE International Conference on Microelectronics, MIEL 2021",
title = "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure",
pages = "203-206",
doi = "10.1109/MIEL52794.2021.9569054"
}
Radović, I. M., Stajčić, A., Mitić, V. V., Serpa, C., Paunović, V.,& Ranđelović, B.. (2021). Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021
Institute of Electrical and Electronics Engineers Inc.., 203-206.
https://doi.org/10.1109/MIEL52794.2021.9569054
Radović IM, Stajčić A, Mitić VV, Serpa C, Paunović V, Ranđelović B. Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021. 2021;:203-206.
doi:10.1109/MIEL52794.2021.9569054 .
Radović, Ivan M., Stajčić, Aleksandar, Mitić, Vojislav V., Serpa, C., Paunović, V., Ranđelović, Branislav, "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure" in 32nd IEEE International Conference on Microelectronics, MIEL 2021 (2021):203-206,
https://doi.org/10.1109/MIEL52794.2021.9569054 . .
2
2