Li, Hao

Link to this page

Authority KeyName Variants
5c50a41c-f334-4a35-bb84-2cecaefa0e6a
  • Li, Hao (9)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) 111 Project (B21017)
The International Joint Scientific and Technical Collaboration between the People’s Republic of China and the Republic of Serbia as part of the Project Number 4-18 The 111 Project (B21017)
Grants from the National Natural Science Foundation of China (41430106, 41720104007, 41573080, 41711530030, 41711530150) Geochemical investigations of sedimentary rocks - fossil fuels and environmental pollutants
Project of the Ministry of Science and Technology of China (S2016G2135) The Graduate Innovation Fund Project of China University of Geosciences, Beijing (YB2021YC016).
The Major National R & D Projects for Chinese Ministry of Science and Technology (2019YFC1803500) The Major National R & D Projects for Chinese Ministry of Science and Technology, Grant (2019YFC1803500)
The National Science Foundation of China (41720104007) The project of the National Science Foundation of China (No 41720104007)
The project of the National Science Foundation of China (No 42230716) 2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing (YB2021YC016)
International Joint Scientific and Technical Collaboration between the People's Republic of China and the Republic of Serbia as part of the Project Number 4–18 International Joint Scientific and Technical Collaboration between the People’s Re- public of China and the Republic of Serbia as part of the Project Number 4–18
Major National R & D Projects for Chinese Ministry of Science and Technology (2019YFC1803500) Major National R&D Projects for Chinese Ministry of Science and Technology (2019YFC1803500)
National Natural Science Foundation of China (42230716) National Science Foundation of China (41720104007)
National Science Foundation of China (42230716) The Chinese Ministry of Science and Technology ( project no 2019YFC1803500)
The National Science Foundation of China (project no 41720104007) The People’s Republic of China and the Republic of Serbia ( project Number 4–18 )

Author's Bibliography

Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants

Cao, Ying; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Ma, Bo; Li, Hao; Zhao, Chenchen; Liu, Bang; Li, Miaomiao

(Elsevier, 2023)

TY  - JOUR
AU  - Cao, Ying
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Ma, Bo
AU  - Li, Hao
AU  - Zhao, Chenchen
AU  - Liu, Bang
AU  - Li, Miaomiao
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6879
AB  - The growing problem of typical organic pollution in mines, and the effective utilization of increasing mine industrial wastes have been the most challenging issues in the current global situation. In this study, copper smelting slag (CSS), hydroxylamine (HA) and H2O2 were employed to construct an efficient surface heterogeneous catalyst for the degradation of organic pollutants in mines. Fayalite and its ≡Fe were proved, by multiple methods, to be the crucial ferriferous catalyst in the CSS. HA greatly increased the oxidation effectiveness of the CSS from 53.6% to ~100% by regulating the Fe2+/Fe3+ circulation within the fayalite lattice. Due to the special structural configuration of iron atoms in fayalite, the surface generation rate of •OH catalyzed by CSS was 101-106 times higher than in other iron-bearing minerals. •OH was demonstrated to be the main active radical species, and as an intermediate, O2•- also had a role in the oxidation process. In the presence of low doses of Cr, a synergistic removal of organic pollutants occurred, dominated by the electron transfer. Accordingly, this study proposes both, a new design concept for recycling the industrial solid waste from mines and a new surface catalyst system for the removal of organic pollutants from mining.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants
VL  - 425
SP  - 138649
DO  - 10.1016/j.jclepro.2023.138649
ER  - 
@article{
author = "Cao, Ying and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Ma, Bo and Li, Hao and Zhao, Chenchen and Liu, Bang and Li, Miaomiao",
year = "2023",
abstract = "The growing problem of typical organic pollution in mines, and the effective utilization of increasing mine industrial wastes have been the most challenging issues in the current global situation. In this study, copper smelting slag (CSS), hydroxylamine (HA) and H2O2 were employed to construct an efficient surface heterogeneous catalyst for the degradation of organic pollutants in mines. Fayalite and its ≡Fe were proved, by multiple methods, to be the crucial ferriferous catalyst in the CSS. HA greatly increased the oxidation effectiveness of the CSS from 53.6% to ~100% by regulating the Fe2+/Fe3+ circulation within the fayalite lattice. Due to the special structural configuration of iron atoms in fayalite, the surface generation rate of •OH catalyzed by CSS was 101-106 times higher than in other iron-bearing minerals. •OH was demonstrated to be the main active radical species, and as an intermediate, O2•- also had a role in the oxidation process. In the presence of low doses of Cr, a synergistic removal of organic pollutants occurred, dominated by the electron transfer. Accordingly, this study proposes both, a new design concept for recycling the industrial solid waste from mines and a new surface catalyst system for the removal of organic pollutants from mining.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants",
volume = "425",
pages = "138649",
doi = "10.1016/j.jclepro.2023.138649"
}
Cao, Y., Yao, J., Šolević Knudsen, T., Pang, W., Ma, B., Li, H., Zhao, C., Liu, B.,& Li, M.. (2023). Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants. in Journal of Cleaner Production
Elsevier., 425, 138649.
https://doi.org/10.1016/j.jclepro.2023.138649
Cao Y, Yao J, Šolević Knudsen T, Pang W, Ma B, Li H, Zhao C, Liu B, Li M. Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants. in Journal of Cleaner Production. 2023;425:138649.
doi:10.1016/j.jclepro.2023.138649 .
Cao, Ying, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Ma, Bo, Li, Hao, Zhao, Chenchen, Liu, Bang, Li, Miaomiao, "Synergy between fayalite-constituted waste copper smelting slag and hydroxylamine: An efficient combination for construction and application of a surface Fenton system in removal of mining organic pollutants" in Journal of Cleaner Production, 425 (2023):138649,
https://doi.org/10.1016/j.jclepro.2023.138649 . .
2
2

Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil

Zhao, Chenchen; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhu, Xiaozhe; Ma, Bo; Li, Hao; Cao, Ying; Liu, Bang

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Zhao, Chenchen
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhu, Xiaozhe
AU  - Ma, Bo
AU  - Li, Hao
AU  - Cao, Ying
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5646
AB  - A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic
cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that
goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional
groups (such as Fe–O, and Fe–OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of
0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58
mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III)
showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface
complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive
adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable
because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the
amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that
GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution
and mine soil.
PB  - Elsevier B.V.
T2  - Journal of Environmental Management
T1  - Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil
VL  - 330
SP  - 117163
DO  - 10.1016/j.jenvman.2022.117163
ER  - 
@article{
author = "Zhao, Chenchen and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhu, Xiaozhe and Ma, Bo and Li, Hao and Cao, Ying and Liu, Bang",
year = "2023",
abstract = "A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic
cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that
goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional
groups (such as Fe–O, and Fe–OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of
0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58
mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III)
showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface
complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive
adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable
because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the
amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that
GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution
and mine soil.",
publisher = "Elsevier B.V.",
journal = "Journal of Environmental Management",
title = "Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil",
volume = "330",
pages = "117163",
doi = "10.1016/j.jenvman.2022.117163"
}
Zhao, C., Yao, J., Šolević Knudsen, T., Liu, J., Zhu, X., Ma, B., Li, H., Cao, Y.,& Liu, B.. (2023). Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. in Journal of Environmental Management
Elsevier B.V.., 330, 117163.
https://doi.org/10.1016/j.jenvman.2022.117163
Zhao C, Yao J, Šolević Knudsen T, Liu J, Zhu X, Ma B, Li H, Cao Y, Liu B. Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil. in Journal of Environmental Management. 2023;330:117163.
doi:10.1016/j.jenvman.2022.117163 .
Zhao, Chenchen, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhu, Xiaozhe, Ma, Bo, Li, Hao, Cao, Ying, Liu, Bang, "Performance and mechanisms for Cd(II) and As(III) simultaneous adsorption by goethite-loaded montmorillonite in aqueous solution and soil" in Journal of Environmental Management, 330 (2023):117163,
https://doi.org/10.1016/j.jenvman.2022.117163 . .
8
8

Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2

Cao, Ying; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Zhu, Junjie; Liu, Bang; Li, Hao; Li, Miaomiao; Su, Jianchao

(Elsevier BV, 2023)

TY  - JOUR
AU  - Cao, Ying
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Zhu, Junjie
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Su, Jianchao
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5580
AB  - UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6–8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.
PB  - Elsevier BV
T2  - Chemosphere
T1  - Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2
VL  - 312
SP  - 137169
DO  - 10.1016/j.chemosphere.2022.137169
ER  - 
@article{
author = "Cao, Ying and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Zhu, Junjie and Liu, Bang and Li, Hao and Li, Miaomiao and Su, Jianchao",
year = "2023",
abstract = "UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6–8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.",
publisher = "Elsevier BV",
journal = "Chemosphere",
title = "Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2",
volume = "312",
pages = "137169",
doi = "10.1016/j.chemosphere.2022.137169"
}
Cao, Y., Yao, J., Šolević Knudsen, T., Pang, W., Zhu, J., Liu, B., Li, H., Li, M.,& Su, J.. (2023). Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2. in Chemosphere
Elsevier BV., 312, 137169.
https://doi.org/10.1016/j.chemosphere.2022.137169
Cao Y, Yao J, Šolević Knudsen T, Pang W, Zhu J, Liu B, Li H, Li M, Su J. Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2. in Chemosphere. 2023;312:137169.
doi:10.1016/j.chemosphere.2022.137169 .
Cao, Ying, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Zhu, Junjie, Liu, Bang, Li, Hao, Li, Miaomiao, Su, Jianchao, "Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H2O2" in Chemosphere, 312 (2023):137169,
https://doi.org/10.1016/j.chemosphere.2022.137169 . .
13
12

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5331
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5403
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
10

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5509
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
8

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5546
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14

Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water

Lu, Chao; Yao, Jun; Šolević Knudsen, Tatjana; Amde, Meseret; Gu, Jihai; Liu, Jianli; Li, Hao; Zhang, Junyang

(Elsevier, 2019)

TY  - JOUR
AU  - Lu, Chao
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Amde, Meseret
AU  - Gu, Jihai
AU  - Liu, Jianli
AU  - Li, Hao
AU  - Zhang, Junyang
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3061
AB  - Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water
VL  - 238
SP  - 117942
DO  - 10.1016/j.jclepro.2019.117942
ER  - 
@article{
author = "Lu, Chao and Yao, Jun and Šolević Knudsen, Tatjana and Amde, Meseret and Gu, Jihai and Liu, Jianli and Li, Hao and Zhang, Junyang",
year = "2019",
abstract = "Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water",
volume = "238",
pages = "117942",
doi = "10.1016/j.jclepro.2019.117942"
}
Lu, C., Yao, J., Šolević Knudsen, T., Amde, M., Gu, J., Liu, J., Li, H.,& Zhang, J.. (2019). Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production
Elsevier., 238, 117942.
https://doi.org/10.1016/j.jclepro.2019.117942
Lu C, Yao J, Šolević Knudsen T, Amde M, Gu J, Liu J, Li H, Zhang J. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production. 2019;238:117942.
doi:10.1016/j.jclepro.2019.117942 .
Lu, Chao, Yao, Jun, Šolević Knudsen, Tatjana, Amde, Meseret, Gu, Jihai, Liu, Jianli, Li, Hao, Zhang, Junyang, "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water" in Journal of Cleaner Production, 238 (2019):117942,
https://doi.org/10.1016/j.jclepro.2019.117942 . .
10
3
11

Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water

Lu, Chao; Yao, Jun; Šolević Knudsen, Tatjana; Amde, Meseret; Gu, Jihai; Liu, Jianli; Li, Hao; Zhang, Junyang

(Elsevier, 2019)

TY  - JOUR
AU  - Lu, Chao
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Amde, Meseret
AU  - Gu, Jihai
AU  - Liu, Jianli
AU  - Li, Hao
AU  - Zhang, Junyang
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3152
AB  - Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water
VL  - 238
SP  - 117942
DO  - 10.1016/j.jclepro.2019.117942
ER  - 
@article{
author = "Lu, Chao and Yao, Jun and Šolević Knudsen, Tatjana and Amde, Meseret and Gu, Jihai and Liu, Jianli and Li, Hao and Zhang, Junyang",
year = "2019",
abstract = "Flotation reagents, especially new chelating agents represented by α-nitroso-β-naphthol, are the main components of cobalt mining drainage. This study reports the degradation of α-nitroso-β-naphthol by simulated UVA-B (280–400 nm) activated systems using three common oxidants, hydrogen peroxide, sodium persulfate and potassium monopersulfate at a laboratory scale using a photoreactor. Parameters which can affect the degradation process were investigated and comparison of the degradation performance of the three systems were made. Based on the results, UVA-B/sodium persulfate system exhibited best performance towards the removal of α-nitroso-β-naphthol with a lower cost of oxidant and energy consumption compared to the others. The removal efficiency was found to increase as the oxidant dosage and the UVA-B power increases. Only potassium monopersulfate could be activated by bicarbonate and chloride ions, and SO4 2− has insignificant effect on the removal efficiency of α-nitroso-β-naphthol for all systems while NO3 − inhibited the degradation of α-nitroso-β-naphthol. In the UVA-B/hydrogen peroxide system, the hydroxyl radical had a leading role in the degradation of α-nitroso-β-naphthol, while in the other two systems, the degradation of α-nitroso-β-naphthol was mainly caused by the hydroxyl and sulphate radicals. Ten major intermediates from α-nitroso-β-naphthol degradation in the three oxidation systems were identified by gas chromatography and mass spectrometry. In summary, this report could be a great input in developing UVA-B activated oxidants-based treatment technologies. The UVA-B/sodium persulfate system is strongly recommended for its consideration in the treatment of mine impacted wastewaters. UVA-B/SPS is the most efficient, economical and energy-saving technique for the degradation of αNβN compared to UVA-B/HP and UVA-B/PMS systems.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water",
volume = "238",
pages = "117942",
doi = "10.1016/j.jclepro.2019.117942"
}
Lu, C., Yao, J., Šolević Knudsen, T., Amde, M., Gu, J., Liu, J., Li, H.,& Zhang, J.. (2019). Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production
Elsevier., 238, 117942.
https://doi.org/10.1016/j.jclepro.2019.117942
Lu C, Yao J, Šolević Knudsen T, Amde M, Gu J, Liu J, Li H, Zhang J. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water. in Journal of Cleaner Production. 2019;238:117942.
doi:10.1016/j.jclepro.2019.117942 .
Lu, Chao, Yao, Jun, Šolević Knudsen, Tatjana, Amde, Meseret, Gu, Jihai, Liu, Jianli, Li, Hao, Zhang, Junyang, "Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water" in Journal of Cleaner Production, 238 (2019):117942,
https://doi.org/10.1016/j.jclepro.2019.117942 . .
10
3
11