Đukić, Dunja

Link to this page

Authority KeyName Variants
044c3483-ecf8-4530-ae10-a83a36fbebdf
  • Đukić, Dunja (4)
Projects

Author's Bibliography

Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties

Mirković, Miljana; Sknepnek, Aleksandra; Miletić, Dunja; Pavlović, Vladimir; Đukić, Dunja; Šuljagić, Marija; Anđelković, Ljubica

(Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia, 2023)

TY  - CONF
AU  - Mirković, Miljana
AU  - Sknepnek, Aleksandra
AU  - Miletić, Dunja
AU  - Pavlović, Vladimir
AU  - Đukić, Dunja
AU  - Šuljagić, Marija
AU  - Anđelković, Ljubica
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6783
AB  - Hydroxyapatite Ca10(PO4)6(OH)2 - HAp presents natural construction material for bones and teeth and therefore is considered biocompatible, and has various applications in fields such as biomedicine, drug delivery, and as a biomarker. Considering nanoceramics' high specific surface area and antimicrobial activity, they can be used as potential antimicrobial materials. Bacterial cellulose (BC) is a biopolymer that stands out in its biodegradability, biocompatibility, and high water retention capacity, but also lacks functional properties. The main goal of this study is to create a newly designed composite material with the functionalization of cellulose by hydroxyapatite with antimicrobial properties. Hydroxyapatite material was incorporated in wet cellulose during the precipitation synthesis reaction. Obtained BC-HAp material was structurally and phase investigated by the XRD method. The morphology of obtained material was done by SEM, and appropriate functional groups were determined by the FTIR method. According to antimicrobial results investigated composite is shown proper antimicrobial activity.
PB  - Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia
C3  - Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad
T1  - Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties
SP  - 70
EP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_cer_6783
ER  - 
@conference{
author = "Mirković, Miljana and Sknepnek, Aleksandra and Miletić, Dunja and Pavlović, Vladimir and Đukić, Dunja and Šuljagić, Marija and Anđelković, Ljubica",
year = "2023",
abstract = "Hydroxyapatite Ca10(PO4)6(OH)2 - HAp presents natural construction material for bones and teeth and therefore is considered biocompatible, and has various applications in fields such as biomedicine, drug delivery, and as a biomarker. Considering nanoceramics' high specific surface area and antimicrobial activity, they can be used as potential antimicrobial materials. Bacterial cellulose (BC) is a biopolymer that stands out in its biodegradability, biocompatibility, and high water retention capacity, but also lacks functional properties. The main goal of this study is to create a newly designed composite material with the functionalization of cellulose by hydroxyapatite with antimicrobial properties. Hydroxyapatite material was incorporated in wet cellulose during the precipitation synthesis reaction. Obtained BC-HAp material was structurally and phase investigated by the XRD method. The morphology of obtained material was done by SEM, and appropriate functional groups were determined by the FTIR method. According to antimicrobial results investigated composite is shown proper antimicrobial activity.",
publisher = "Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia",
journal = "Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad",
title = "Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties",
pages = "70-70",
url = "https://hdl.handle.net/21.15107/rcub_cer_6783"
}
Mirković, M., Sknepnek, A., Miletić, D., Pavlović, V., Đukić, D., Šuljagić, M.,& Anđelković, L.. (2023). Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties. in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad
Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia., 70-70.
https://hdl.handle.net/21.15107/rcub_cer_6783
Mirković M, Sknepnek A, Miletić D, Pavlović V, Đukić D, Šuljagić M, Anđelković L. Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties. in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad. 2023;:70-70.
https://hdl.handle.net/21.15107/rcub_cer_6783 .
Mirković, Miljana, Sknepnek, Aleksandra, Miletić, Dunja, Pavlović, Vladimir, Đukić, Dunja, Šuljagić, Marija, Anđelković, Ljubica, "Synthesis and characterization of cellulose-hydroxyapatite composite material with proper antimicrobial properties" in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad (2023):70-70,
https://hdl.handle.net/21.15107/rcub_cer_6783 .

Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions

Đukić, Dunja; Krstić, Aleksandar; Jakovljević, Ksenija; Butulija, Svetlana; Anđelković, Ljubica; Pavlović, Vladimir; Mirković, Miljana

(MDPI, 2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Krstić, Aleksandar
AU  - Jakovljević, Ksenija
AU  - Butulija, Svetlana
AU  - Anđelković, Ljubica
AU  - Pavlović, Vladimir
AU  - Mirković, Miljana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4941
AB  - Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with the
addition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural,morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).
PB  - MDPI
T2  - Sustainability
T1  - Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions
VL  - 14
IS  - 7
SP  - 4003
DO  - 10.3390/su14074003
ER  - 
@article{
author = "Đukić, Dunja and Krstić, Aleksandar and Jakovljević, Ksenija and Butulija, Svetlana and Anđelković, Ljubica and Pavlović, Vladimir and Mirković, Miljana",
year = "2022",
abstract = "Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with the
addition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural,morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).",
publisher = "MDPI",
journal = "Sustainability",
title = "Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions",
volume = "14",
number = "7",
pages = "4003",
doi = "10.3390/su14074003"
}
Đukić, D., Krstić, A., Jakovljević, K., Butulija, S., Anđelković, L., Pavlović, V.,& Mirković, M.. (2022). Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions. in Sustainability
MDPI., 14(7), 4003.
https://doi.org/10.3390/su14074003
Đukić D, Krstić A, Jakovljević K, Butulija S, Anđelković L, Pavlović V, Mirković M. Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions. in Sustainability. 2022;14(7):4003.
doi:10.3390/su14074003 .
Đukić, Dunja, Krstić, Aleksandar, Jakovljević, Ksenija, Butulija, Svetlana, Anđelković, Ljubica, Pavlović, Vladimir, Mirković, Miljana, "Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions" in Sustainability, 14, no. 7 (2022):4003,
https://doi.org/10.3390/su14074003 . .
4

Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials

Đukić, Dunja; Šuljagić, Marija; Anđelković, Ljubica; Pavlović, Vera; Bučevac, Dušan; Vrbica, Boško; Mirković, Miljana

(Association for ETRAN Society, 2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Šuljagić, Marija
AU  - Anđelković, Ljubica
AU  - Pavlović, Vera
AU  - Bučevac, Dušan
AU  - Vrbica, Boško
AU  - Mirković, Miljana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5332
AB  - The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties.
AB  - U ovom radu ispitivan je uticaj količine dodatog brušita i temperature sinterovanja na mehanička svojstva geopolimer-brušit veziva. Kao
polazni materijali za sintezu korišćeni su kaolinitska glina i sintetisani brušit. Kompletna fazna i strukturna analiza izvršena je difrakcijom
rendgenskih zraka na prahu i infracrvenom spektroskopijom sa Furijeovom transformacijom. Efekat dodatka brušita u geopolimernu matricu poboljšao je pritisnu čvrstoću, dok je biskvitno pečenje izazvalo faznu transformaciju brušita u kalcijum pirofosfat što je negativno uticalo na pritisnu čvrstoću takvih materijala. Dobijeni rezultati ukazuju da korišćenje relativno visokih temperatura sinterovanja nije uvek neophodan korak za proizvodnju cementa na bazi geopolimera sa istaknutim mehaničkim svojstvima.
PB  - Association for ETRAN Society
T2  - Science of Sintering
T1  - Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials
VL  - 54
IS  - 3
SP  - 287
EP  - 294
DO  - 10.2298/SOS2203287D
ER  - 
@article{
author = "Đukić, Dunja and Šuljagić, Marija and Anđelković, Ljubica and Pavlović, Vera and Bučevac, Dušan and Vrbica, Boško and Mirković, Miljana",
year = "2022",
abstract = "The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties., U ovom radu ispitivan je uticaj količine dodatog brušita i temperature sinterovanja na mehanička svojstva geopolimer-brušit veziva. Kao
polazni materijali za sintezu korišćeni su kaolinitska glina i sintetisani brušit. Kompletna fazna i strukturna analiza izvršena je difrakcijom
rendgenskih zraka na prahu i infracrvenom spektroskopijom sa Furijeovom transformacijom. Efekat dodatka brušita u geopolimernu matricu poboljšao je pritisnu čvrstoću, dok je biskvitno pečenje izazvalo faznu transformaciju brušita u kalcijum pirofosfat što je negativno uticalo na pritisnu čvrstoću takvih materijala. Dobijeni rezultati ukazuju da korišćenje relativno visokih temperatura sinterovanja nije uvek neophodan korak za proizvodnju cementa na bazi geopolimera sa istaknutim mehaničkim svojstvima.",
publisher = "Association for ETRAN Society",
journal = "Science of Sintering",
title = "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials",
volume = "54",
number = "3",
pages = "287-294",
doi = "10.2298/SOS2203287D"
}
Đukić, D., Šuljagić, M., Anđelković, L., Pavlović, V., Bučevac, D., Vrbica, B.,& Mirković, M.. (2022). Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering
Association for ETRAN Society., 54(3), 287-294.
https://doi.org/10.2298/SOS2203287D
Đukić D, Šuljagić M, Anđelković L, Pavlović V, Bučevac D, Vrbica B, Mirković M. Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering. 2022;54(3):287-294.
doi:10.2298/SOS2203287D .
Đukić, Dunja, Šuljagić, Marija, Anđelković, Ljubica, Pavlović, Vera, Bučevac, Dušan, Vrbica, Boško, Mirković, Miljana, "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials" in Science of Sintering, 54, no. 3 (2022):287-294,
https://doi.org/10.2298/SOS2203287D . .

The influence of the addition of brushite on the mechanical properties of geopolymer binder

Đukić, Dunja; Vrbica, Boško; Šuljagić, Marija; Jeremić, Marija; Simić, Marko; Gulicovski, Jelena; Mirković, Miljana

(Belgrade: Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, 2021)

TY  - CONF
AU  - Đukić, Dunja
AU  - Vrbica, Boško
AU  - Šuljagić, Marija
AU  - Jeremić, Marija
AU  - Simić, Marko
AU  - Gulicovski, Jelena
AU  - Mirković, Miljana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5913
AB  - The growing need to protect the environment and reuse abandoned raw materials is increasingly used in the construction industry to make  in addition to cementitious materials and geopolymer materials. Geopolymers are alkali-activated materials, in which the starting material is mainly some residual material such as: clay, fly ash, slag or red sludge [1,2]. There is growing need to create new binders which can replace portland cement and geopolymer materials are increasingly being used for this purpose. For geopolymerization reaction process high concentration basic solution with alkaline activators are adding and the process itself leads to modifications of the structures of the starting raw materials [1]. Due to growing needs to improve mechanical properties of geopolymer binders, different calcium sources can be added and one of them is brushite-dicalcium 
phosphate dihydrate [3]. The aim of this paper is synthesis and characterization of Brushite-metakaolin-based geopolymer material samples, with different percentages of pure Brushite material added. Brushite, was obtained by solution precipitation reaction from appropriate acetate salts solution, by green chemistry process. Raw kaolinite clay from the Rudovci deposit (Serbia) was used as Al and Si source for geopolymer binder production. Kaolinite was thermally treated at 750°C for three hours, to produce metakaolin and remove residual organic matter. In order to investigate the influence of calcium phosphate compound on mechanical and microstructural 
properties geopolymer material samples were synthesized using metakaolin mixed with activator solution prepared from sodium silicate and sodium hydroxide (6M) in relation 1,6 with addition of 2%, 4%, 6%, 8%, 10%, of pure brushite. Phase, structural, and microstructural characterisation were preformed in a mening of XRPD and SEM analysis. Difference between diffractograms of starting materials and Brushite-metakolin analogues indicates that geopolymerization process was successful in all samples. DRIFT technique was used to obtain characteristic vibrations of functional groups in obtained materials. The compressive strenghts of geopolymer binders containing brushite were in a range of 15-55 Mpa. The the highest hardness was achieved by a geopolymer with 10% of brushite.
PB  - Belgrade: Vinča Institute of Nuclear Sciences-National Institute of the Republic of  Serbia
C3  - Book of Abstracts,Training School Al-rich Industrial Residues for  Inorganic Materials, May 24-28, 2021, Belgrade, Serbia
T1  - The influence of the addition of brushite on the  mechanical properties of geopolymer binder
SP  - 74
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_cer_5913
ER  - 
@conference{
author = "Đukić, Dunja and Vrbica, Boško and Šuljagić, Marija and Jeremić, Marija and Simić, Marko and Gulicovski, Jelena and Mirković, Miljana",
year = "2021",
abstract = "The growing need to protect the environment and reuse abandoned raw materials is increasingly used in the construction industry to make  in addition to cementitious materials and geopolymer materials. Geopolymers are alkali-activated materials, in which the starting material is mainly some residual material such as: clay, fly ash, slag or red sludge [1,2]. There is growing need to create new binders which can replace portland cement and geopolymer materials are increasingly being used for this purpose. For geopolymerization reaction process high concentration basic solution with alkaline activators are adding and the process itself leads to modifications of the structures of the starting raw materials [1]. Due to growing needs to improve mechanical properties of geopolymer binders, different calcium sources can be added and one of them is brushite-dicalcium 
phosphate dihydrate [3]. The aim of this paper is synthesis and characterization of Brushite-metakaolin-based geopolymer material samples, with different percentages of pure Brushite material added. Brushite, was obtained by solution precipitation reaction from appropriate acetate salts solution, by green chemistry process. Raw kaolinite clay from the Rudovci deposit (Serbia) was used as Al and Si source for geopolymer binder production. Kaolinite was thermally treated at 750°C for three hours, to produce metakaolin and remove residual organic matter. In order to investigate the influence of calcium phosphate compound on mechanical and microstructural 
properties geopolymer material samples were synthesized using metakaolin mixed with activator solution prepared from sodium silicate and sodium hydroxide (6M) in relation 1,6 with addition of 2%, 4%, 6%, 8%, 10%, of pure brushite. Phase, structural, and microstructural characterisation were preformed in a mening of XRPD and SEM analysis. Difference between diffractograms of starting materials and Brushite-metakolin analogues indicates that geopolymerization process was successful in all samples. DRIFT technique was used to obtain characteristic vibrations of functional groups in obtained materials. The compressive strenghts of geopolymer binders containing brushite were in a range of 15-55 Mpa. The the highest hardness was achieved by a geopolymer with 10% of brushite.",
publisher = "Belgrade: Vinča Institute of Nuclear Sciences-National Institute of the Republic of  Serbia",
journal = "Book of Abstracts,Training School Al-rich Industrial Residues for  Inorganic Materials, May 24-28, 2021, Belgrade, Serbia",
title = "The influence of the addition of brushite on the  mechanical properties of geopolymer binder",
pages = "74-76",
url = "https://hdl.handle.net/21.15107/rcub_cer_5913"
}
Đukić, D., Vrbica, B., Šuljagić, M., Jeremić, M., Simić, M., Gulicovski, J.,& Mirković, M.. (2021). The influence of the addition of brushite on the  mechanical properties of geopolymer binder. in Book of Abstracts,Training School Al-rich Industrial Residues for  Inorganic Materials, May 24-28, 2021, Belgrade, Serbia
Belgrade: Vinča Institute of Nuclear Sciences-National Institute of the Republic of  Serbia., 74-76.
https://hdl.handle.net/21.15107/rcub_cer_5913
Đukić D, Vrbica B, Šuljagić M, Jeremić M, Simić M, Gulicovski J, Mirković M. The influence of the addition of brushite on the  mechanical properties of geopolymer binder. in Book of Abstracts,Training School Al-rich Industrial Residues for  Inorganic Materials, May 24-28, 2021, Belgrade, Serbia. 2021;:74-76.
https://hdl.handle.net/21.15107/rcub_cer_5913 .
Đukić, Dunja, Vrbica, Boško, Šuljagić, Marija, Jeremić, Marija, Simić, Marko, Gulicovski, Jelena, Mirković, Miljana, "The influence of the addition of brushite on the  mechanical properties of geopolymer binder" in Book of Abstracts,Training School Al-rich Industrial Residues for  Inorganic Materials, May 24-28, 2021, Belgrade, Serbia (2021):74-76,
https://hdl.handle.net/21.15107/rcub_cer_5913 .