Jovanović, Zorana

Link to this page

Authority KeyName Variants
eafd6d6c-02c9-47d1-a287-41a0ff924aed
  • Jovanović, Zorana (4)
Projects

Author's Bibliography

Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina

Gligorijević, Nikola; Jovanović, Zorana; Cvijetić, Ilija; Šunderić, Miloš; Veličković, Luka; Katrlík, Jaroslav; Holazová, Alena; Nikolić, Milan; Minić, Simeon

(MDPI, 2024)

TY  - JOUR
AU  - Gligorijević, Nikola
AU  - Jovanović, Zorana
AU  - Cvijetić, Ilija
AU  - Šunderić, Miloš
AU  - Veličković, Luka
AU  - Katrlík, Jaroslav
AU  - Holazová, Alena
AU  - Nikolić, Milan
AU  - Minić, Simeon
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7298
AB  - Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable
health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its
more extensive use is its relatively low stability. This study aimed to screen various food-derived
ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular
docking. Among twelve examined ligands, the protein fluorescence quenching revealed that
only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105
M–1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer,
with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy
demonstrated the changes in the C-PC absorption spectra in a complex with quercetin
and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect
the secondary structure content, but they induced changes in the tertiary protein structure in the
CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10
increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that
interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents
for C-PC in the food industry.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina
VL  - 25
IS  - 1
SP  - 229
DO  - 10.3390/ijms25010229
ER  - 
@article{
author = "Gligorijević, Nikola and Jovanović, Zorana and Cvijetić, Ilija and Šunderić, Miloš and Veličković, Luka and Katrlík, Jaroslav and Holazová, Alena and Nikolić, Milan and Minić, Simeon",
year = "2024",
abstract = "Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable
health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its
more extensive use is its relatively low stability. This study aimed to screen various food-derived
ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular
docking. Among twelve examined ligands, the protein fluorescence quenching revealed that
only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105
M–1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer,
with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy
demonstrated the changes in the C-PC absorption spectra in a complex with quercetin
and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect
the secondary structure content, but they induced changes in the tertiary protein structure in the
CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10
increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that
interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents
for C-PC in the food industry.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina",
volume = "25",
number = "1",
pages = "229",
doi = "10.3390/ijms25010229"
}
Gligorijević, N., Jovanović, Z., Cvijetić, I., Šunderić, M., Veličković, L., Katrlík, J., Holazová, A., Nikolić, M.,& Minić, S.. (2024). Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina. in International Journal of Molecular Sciences
MDPI., 25(1), 229.
https://doi.org/10.3390/ijms25010229
Gligorijević N, Jovanović Z, Cvijetić I, Šunderić M, Veličković L, Katrlík J, Holazová A, Nikolić M, Minić S. Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina. in International Journal of Molecular Sciences. 2024;25(1):229.
doi:10.3390/ijms25010229 .
Gligorijević, Nikola, Jovanović, Zorana, Cvijetić, Ilija, Šunderić, Miloš, Veličković, Luka, Katrlík, Jaroslav, Holazová, Alena, Nikolić, Milan, Minić, Simeon, "Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina" in International Journal of Molecular Sciences, 25, no. 1 (2024):229,
https://doi.org/10.3390/ijms25010229 . .
1

Stabilization of C-phycocyanin by immobilization in alginate beads

Gligorijević, Nikola; Veličković, Luka; Svrzić, Nikola; Jovanović, Zorana; Minić, Simeon; Nikolić, Milan

(Wiley, 2023)

TY  - CONF
AU  - Gligorijević, Nikola
AU  - Veličković, Luka
AU  - Svrzić, Nikola
AU  - Jovanović, Zorana
AU  - Minić, Simeon
AU  - Nikolić, Milan
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6519
AB  - C-Phycocyanin (C-PC), the major protein of cyanobacteria Arthrospira platensis, is a phycobiliprotein with potent biological activity. It has several beneficial effects, including anti-oxidant, anti-inflammatory, immunomodulatory, and anti-cancer. A significant challenge for the broader application of C-PC in the food industry is its stability in food processing conditions, such
as increased light exposure, temperature, and high pressure and drying. This work aimed to investigate if the immobilization of C-PC onto alginate beads could improve its stability. C-PC was
immobilized by dropping the solution of C-PC and 1% alginate (final concentration) in the solution of 2% CaCl2. Both protein/alginate mixture and CaCl2 were kept at pH 4. Immobilized CPC
was treated for 30 min at 65°C, by high pressure up to 4500 bar, and incubated under light exposure for a month. Alginate beads with immobilized C-PC were also left to dry in the fridge and kept for a month. C-PC was extracted from alginate beads by immersing them in 20 mM phosphate buffer, pH 7. The stability of C-PC was assessed by a color change and UV-VIS spectroscopy. Immobilized C-PC was stable under all tested conditions, with only small aggregation and color change appearing
after high-pressure treatment. Immobilization of C-PC by alginate thus shows promise for its efficient stabilization under food processing conditions.
PB  - Wiley
C3  - FEBS Open Bio
T1  - Stabilization of C-phycocyanin by immobilization in alginate beads
VL  - 13
IS  - S2
SP  - 234
EP  - 234
DO  - 10.1002/2211-5463.13646
ER  - 
@conference{
author = "Gligorijević, Nikola and Veličković, Luka and Svrzić, Nikola and Jovanović, Zorana and Minić, Simeon and Nikolić, Milan",
year = "2023",
abstract = "C-Phycocyanin (C-PC), the major protein of cyanobacteria Arthrospira platensis, is a phycobiliprotein with potent biological activity. It has several beneficial effects, including anti-oxidant, anti-inflammatory, immunomodulatory, and anti-cancer. A significant challenge for the broader application of C-PC in the food industry is its stability in food processing conditions, such
as increased light exposure, temperature, and high pressure and drying. This work aimed to investigate if the immobilization of C-PC onto alginate beads could improve its stability. C-PC was
immobilized by dropping the solution of C-PC and 1% alginate (final concentration) in the solution of 2% CaCl2. Both protein/alginate mixture and CaCl2 were kept at pH 4. Immobilized CPC
was treated for 30 min at 65°C, by high pressure up to 4500 bar, and incubated under light exposure for a month. Alginate beads with immobilized C-PC were also left to dry in the fridge and kept for a month. C-PC was extracted from alginate beads by immersing them in 20 mM phosphate buffer, pH 7. The stability of C-PC was assessed by a color change and UV-VIS spectroscopy. Immobilized C-PC was stable under all tested conditions, with only small aggregation and color change appearing
after high-pressure treatment. Immobilization of C-PC by alginate thus shows promise for its efficient stabilization under food processing conditions.",
publisher = "Wiley",
journal = "FEBS Open Bio",
title = "Stabilization of C-phycocyanin by immobilization in alginate beads",
volume = "13",
number = "S2",
pages = "234-234",
doi = "10.1002/2211-5463.13646"
}
Gligorijević, N., Veličković, L., Svrzić, N., Jovanović, Z., Minić, S.,& Nikolić, M.. (2023). Stabilization of C-phycocyanin by immobilization in alginate beads. in FEBS Open Bio
Wiley., 13(S2), 234-234.
https://doi.org/10.1002/2211-5463.13646
Gligorijević N, Veličković L, Svrzić N, Jovanović Z, Minić S, Nikolić M. Stabilization of C-phycocyanin by immobilization in alginate beads. in FEBS Open Bio. 2023;13(S2):234-234.
doi:10.1002/2211-5463.13646 .
Gligorijević, Nikola, Veličković, Luka, Svrzić, Nikola, Jovanović, Zorana, Minić, Simeon, Nikolić, Milan, "Stabilization of C-phycocyanin by immobilization in alginate beads" in FEBS Open Bio, 13, no. S2 (2023):234-234,
https://doi.org/10.1002/2211-5463.13646 . .
1

Examination of C-phycocyanin interactions with selected vitamins

Ivanov, Aleksandar; Veličković, Luka; Jovanović, Zorana; Gligorijević, Nikola; Minić, Simeon; Nikolić, Milan

(Serbian Biochemical Society, 2023)

TY  - CONF
AU  - Ivanov, Aleksandar
AU  - Veličković, Luka
AU  - Jovanović, Zorana
AU  - Gligorijević, Nikola
AU  - Minić, Simeon
AU  - Nikolić, Milan
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6665
AB  - C-phycocyanin (C-PC) is a photosynthetic protein from Arthrospira platensis
(cyanobacteria). Due to its intense blue colour, which is very rare in nature, C-PC has
industrial applications as a food colourant as a substitute for synthetic food colourants.
Disadvantages of C-PC as a food colourant are its poor stability at high temperatures
(during thermal treatment of the food) and its sensibility to change pH value. The binding
of food-derived small molecules, such as vitamins, could stabilize the structure of C-PC at
high temperatures and wide pH ranges. In this study, we characterized the binding of
selected vitamins to C-PC, purified from the commercial powder of Arthrospira platensis.
We used hydrophilic vitamins (B1, B2, B7, B9, B12), lipophilic vitamins (A, D3) and
provitamin (β-carotene). Fluorescent spectroscopy showed a decrease in fluorescence of CPC
i n t he p resence o f v itamin A, v itamin D3 a nd β -carotene (lipophilic molecules)
compared to the control. In contrast, the fluorescence of C-PC in the presence of
hydrophilic vitamins showed minimal change. The protein fluorescence quenching
approach demonstrated hydrophobic (pro)vitamins binding affinities ranging from 0.02 to
5.9 x 105 M-1, with the ability of hydrophobic (pro)vitamins to bind at the different sites on
C-PC. UV-VIS spectrophotometry showed that the binding of hydrophobic (pro)vitamins
does not affect the protein colour, while CD spectroscopy revealed that the binding of
chosen molecules does not significantly influence the secondary structure of C-PC.
Overall, this study demonstrated C-PC's significant potential in binding hydrophobic
(pro)vitamins, while further research is required to test if these ligands could improve CPC
stability.
PB  - Serbian Biochemical Society
C3  - Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia
T1  - Examination of C-phycocyanin interactions with selected vitamins
SP  - 106
EP  - 106
UR  - https://hdl.handle.net/21.15107/rcub_cer_6665
ER  - 
@conference{
author = "Ivanov, Aleksandar and Veličković, Luka and Jovanović, Zorana and Gligorijević, Nikola and Minić, Simeon and Nikolić, Milan",
year = "2023",
abstract = "C-phycocyanin (C-PC) is a photosynthetic protein from Arthrospira platensis
(cyanobacteria). Due to its intense blue colour, which is very rare in nature, C-PC has
industrial applications as a food colourant as a substitute for synthetic food colourants.
Disadvantages of C-PC as a food colourant are its poor stability at high temperatures
(during thermal treatment of the food) and its sensibility to change pH value. The binding
of food-derived small molecules, such as vitamins, could stabilize the structure of C-PC at
high temperatures and wide pH ranges. In this study, we characterized the binding of
selected vitamins to C-PC, purified from the commercial powder of Arthrospira platensis.
We used hydrophilic vitamins (B1, B2, B7, B9, B12), lipophilic vitamins (A, D3) and
provitamin (β-carotene). Fluorescent spectroscopy showed a decrease in fluorescence of CPC
i n t he p resence o f v itamin A, v itamin D3 a nd β -carotene (lipophilic molecules)
compared to the control. In contrast, the fluorescence of C-PC in the presence of
hydrophilic vitamins showed minimal change. The protein fluorescence quenching
approach demonstrated hydrophobic (pro)vitamins binding affinities ranging from 0.02 to
5.9 x 105 M-1, with the ability of hydrophobic (pro)vitamins to bind at the different sites on
C-PC. UV-VIS spectrophotometry showed that the binding of hydrophobic (pro)vitamins
does not affect the protein colour, while CD spectroscopy revealed that the binding of
chosen molecules does not significantly influence the secondary structure of C-PC.
Overall, this study demonstrated C-PC's significant potential in binding hydrophobic
(pro)vitamins, while further research is required to test if these ligands could improve CPC
stability.",
publisher = "Serbian Biochemical Society",
journal = "Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia",
title = "Examination of C-phycocyanin interactions with selected vitamins",
pages = "106-106",
url = "https://hdl.handle.net/21.15107/rcub_cer_6665"
}
Ivanov, A., Veličković, L., Jovanović, Z., Gligorijević, N., Minić, S.,& Nikolić, M.. (2023). Examination of C-phycocyanin interactions with selected vitamins. in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia
Serbian Biochemical Society., 106-106.
https://hdl.handle.net/21.15107/rcub_cer_6665
Ivanov A, Veličković L, Jovanović Z, Gligorijević N, Minić S, Nikolić M. Examination of C-phycocyanin interactions with selected vitamins. in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia. 2023;:106-106.
https://hdl.handle.net/21.15107/rcub_cer_6665 .
Ivanov, Aleksandar, Veličković, Luka, Jovanović, Zorana, Gligorijević, Nikola, Minić, Simeon, Nikolić, Milan, "Examination of C-phycocyanin interactions with selected vitamins" in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia (2023):106-106,
https://hdl.handle.net/21.15107/rcub_cer_6665 .

Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin

Jovanović, Zorana; Annighöfer, Burkhard; Dudzinski, Daniel; Veličković, Luka; Gligorijević, Nikola; Nikolić, Milan; Brûlet, Annie; Assifaoui, Ali; Combet, Sophie; Minić, Simeon

(Serbian Biochemical Society, 2023)

TY  - CONF
AU  - Jovanović, Zorana
AU  - Annighöfer, Burkhard
AU  - Dudzinski, Daniel
AU  - Veličković, Luka
AU  - Gligorijević, Nikola
AU  - Nikolić, Milan
AU  - Brûlet, Annie
AU  - Assifaoui, Ali
AU  - Combet, Sophie
AU  - Minić, Simeon
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6669
AB  - The color of food products is an important aspect in food industry, and its preservation
remains a big challenge. We aim to preserve the natural blue dye of C-phycocyanin (C-PC)
phycobiliprotein from Spirulina microalgae. For this purpose, we incorporated C-PC in
combined starch and β-lactoglobulin (BLG) hydrogels by using a high-pressure (HP)
process. Indeed, in thermal treatment, the color derived from C-PC is entirely lost. We
characterized the obtained HP gels by both rheology and small-angle X-ray scattering
(SAXS). Various formulations of binary (BLG/C-PC) and ternary (starch/BLG/C-PC)
systems were tested under HP up to 4,500 bar. A good preservation of the C-PC pigment
was established by mixing BLG and starch with C-PC at pH 7, with concentrations of 180,
5, and 10 mg/mL, respectively. Identical component concentrations were maintained in the
binary systems. Structure of gels was characterized by SAXS providing insight of C-PC
interactions with BLG and starch after HP process which leads to the formation of solid
gels with larger mesh compared to two-component systems. This results in enhanced
mechanical properties, which were determined by amplitude and frequency sweep
measurements using a rheometer with applied plane/plane geometry. Therefore, adding
starch, even at small concentration, significantly improves gel visual appearance and
mechanical properties. Our study reveals that preservation through HP treatment is more
effective than high temperature treatment, as visually observed through the sustained color
integrity of C-PC blue dye.
PB  - Serbian Biochemical Society
C3  - Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia
T1  - Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin
SP  - 150
EP  - 150
UR  - https://hdl.handle.net/21.15107/rcub_cer_6669
ER  - 
@conference{
author = "Jovanović, Zorana and Annighöfer, Burkhard and Dudzinski, Daniel and Veličković, Luka and Gligorijević, Nikola and Nikolić, Milan and Brûlet, Annie and Assifaoui, Ali and Combet, Sophie and Minić, Simeon",
year = "2023",
abstract = "The color of food products is an important aspect in food industry, and its preservation
remains a big challenge. We aim to preserve the natural blue dye of C-phycocyanin (C-PC)
phycobiliprotein from Spirulina microalgae. For this purpose, we incorporated C-PC in
combined starch and β-lactoglobulin (BLG) hydrogels by using a high-pressure (HP)
process. Indeed, in thermal treatment, the color derived from C-PC is entirely lost. We
characterized the obtained HP gels by both rheology and small-angle X-ray scattering
(SAXS). Various formulations of binary (BLG/C-PC) and ternary (starch/BLG/C-PC)
systems were tested under HP up to 4,500 bar. A good preservation of the C-PC pigment
was established by mixing BLG and starch with C-PC at pH 7, with concentrations of 180,
5, and 10 mg/mL, respectively. Identical component concentrations were maintained in the
binary systems. Structure of gels was characterized by SAXS providing insight of C-PC
interactions with BLG and starch after HP process which leads to the formation of solid
gels with larger mesh compared to two-component systems. This results in enhanced
mechanical properties, which were determined by amplitude and frequency sweep
measurements using a rheometer with applied plane/plane geometry. Therefore, adding
starch, even at small concentration, significantly improves gel visual appearance and
mechanical properties. Our study reveals that preservation through HP treatment is more
effective than high temperature treatment, as visually observed through the sustained color
integrity of C-PC blue dye.",
publisher = "Serbian Biochemical Society",
journal = "Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia",
title = "Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin",
pages = "150-150",
url = "https://hdl.handle.net/21.15107/rcub_cer_6669"
}
Jovanović, Z., Annighöfer, B., Dudzinski, D., Veličković, L., Gligorijević, N., Nikolić, M., Brûlet, A., Assifaoui, A., Combet, S.,& Minić, S.. (2023). Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin. in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia
Serbian Biochemical Society., 150-150.
https://hdl.handle.net/21.15107/rcub_cer_6669
Jovanović Z, Annighöfer B, Dudzinski D, Veličković L, Gligorijević N, Nikolić M, Brûlet A, Assifaoui A, Combet S, Minić S. Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin. in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia. 2023;:150-150.
https://hdl.handle.net/21.15107/rcub_cer_6669 .
Jovanović, Zorana, Annighöfer, Burkhard, Dudzinski, Daniel, Veličković, Luka, Gligorijević, Nikola, Nikolić, Milan, Brûlet, Annie, Assifaoui, Ali, Combet, Sophie, Minić, Simeon, "Combined hydrogels of starch and β-lactoglobulin as matrices for the preservation of C-phycocyanin" in Serbian Biochemical Society Twelfth Conference, International scientific meeting, “Biochemistry in Biotechnology,” September 21-23, 2023, Belgrade, Serbia (2023):150-150,
https://hdl.handle.net/21.15107/rcub_cer_6669 .