Minkina, Tatiana

Link to this page

Authority KeyName Variants
orcid::0000-0003-3022-0883
  • Minkina, Tatiana (2)
Projects

Author's Bibliography

Wetlands as nature-based solutions for water management in different environments

Ferreira, Carla S.S.; Kašanin-Grubin, Milica; Kapović Solomun, Marijana; Sushkova, Svetlana; Minkina, Tatiana; Zhao, Wenwu; Kalantari, Zahra

(Elsevier, 2023)

TY  - JOUR
AU  - Ferreira, Carla S.S.
AU  - Kašanin-Grubin, Milica
AU  - Kapović Solomun, Marijana
AU  - Sushkova, Svetlana
AU  - Minkina, Tatiana
AU  - Zhao, Wenwu
AU  - Kalantari, Zahra
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7219
AB  - Wetlands are multifunctional systems performing as nature-based solutions (NBS) for water management. This paper provides an overview of natural and constructed wetlands and their potential to support the regulation of hydrological fluxes and water quality. Wetlands can modulate peak flows by storing runoff and slowly releasing it over time, with positive impacts on soil moisture. They can also change the overall water balance by influencing evapotranspiration, infiltration, and groundwater recharge. They can enhance resilience of a catchment to floods and torrents, especially with relative low return periods (<50 years), and safeguard water availability during droughts. Wetlands may remove or reduce a number of organic and inorganic pollutants (e.g., nutrients, heavy metals, hydrocarbons, pesticides) by different physical, chemical, and biological processes developed between vegetation, microorganisms, soil/growth substrate, and water. They have proven to be efficient and effective in improving the quality of water from different sources, such as runoff from agriculture and urban areas, and domestic and industrial wastewater. The overall performance of wetlands is determined by their characteristics (e.g., size, design, type of vegetation), within-catchment position, type and amount of water and pollutants, and local conditions (e.g., climate). A focus on wetlandscape, rather than individual wetlands, is required for optimal water management and maximization of other ecosystem services.
PB  - Elsevier
T2  - Current Opinion in Environmental Science & Health
T1  - Wetlands as nature-based solutions for water management in different environments
VL  - 33
SP  - 100476
DO  - 10.1016/j.coesh.2023.100476
ER  - 
@article{
author = "Ferreira, Carla S.S. and Kašanin-Grubin, Milica and Kapović Solomun, Marijana and Sushkova, Svetlana and Minkina, Tatiana and Zhao, Wenwu and Kalantari, Zahra",
year = "2023",
abstract = "Wetlands are multifunctional systems performing as nature-based solutions (NBS) for water management. This paper provides an overview of natural and constructed wetlands and their potential to support the regulation of hydrological fluxes and water quality. Wetlands can modulate peak flows by storing runoff and slowly releasing it over time, with positive impacts on soil moisture. They can also change the overall water balance by influencing evapotranspiration, infiltration, and groundwater recharge. They can enhance resilience of a catchment to floods and torrents, especially with relative low return periods (<50 years), and safeguard water availability during droughts. Wetlands may remove or reduce a number of organic and inorganic pollutants (e.g., nutrients, heavy metals, hydrocarbons, pesticides) by different physical, chemical, and biological processes developed between vegetation, microorganisms, soil/growth substrate, and water. They have proven to be efficient and effective in improving the quality of water from different sources, such as runoff from agriculture and urban areas, and domestic and industrial wastewater. The overall performance of wetlands is determined by their characteristics (e.g., size, design, type of vegetation), within-catchment position, type and amount of water and pollutants, and local conditions (e.g., climate). A focus on wetlandscape, rather than individual wetlands, is required for optimal water management and maximization of other ecosystem services.",
publisher = "Elsevier",
journal = "Current Opinion in Environmental Science & Health",
title = "Wetlands as nature-based solutions for water management in different environments",
volume = "33",
pages = "100476",
doi = "10.1016/j.coesh.2023.100476"
}
Ferreira, C. S.S., Kašanin-Grubin, M., Kapović Solomun, M., Sushkova, S., Minkina, T., Zhao, W.,& Kalantari, Z.. (2023). Wetlands as nature-based solutions for water management in different environments. in Current Opinion in Environmental Science & Health
Elsevier., 33, 100476.
https://doi.org/10.1016/j.coesh.2023.100476
Ferreira CS, Kašanin-Grubin M, Kapović Solomun M, Sushkova S, Minkina T, Zhao W, Kalantari Z. Wetlands as nature-based solutions for water management in different environments. in Current Opinion in Environmental Science & Health. 2023;33:100476.
doi:10.1016/j.coesh.2023.100476 .
Ferreira, Carla S.S., Kašanin-Grubin, Milica, Kapović Solomun, Marijana, Sushkova, Svetlana, Minkina, Tatiana, Zhao, Wenwu, Kalantari, Zahra, "Wetlands as nature-based solutions for water management in different environments" in Current Opinion in Environmental Science & Health, 33 (2023):100476,
https://doi.org/10.1016/j.coesh.2023.100476 . .
1
11
7

Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism

Ma, Bo; Yao, Jun; Chen, Zhihui; Liu, Bang; Kim, Jonghyok; Zhao, Chenchen; Zhu, Xiaozhe; Mihucz, Victor G.; Minkina, Tatiana; Šolević Knudsen, Tatjana

(Elsevier, 2022)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Chen, Zhihui
AU  - Liu, Bang
AU  - Kim, Jonghyok
AU  - Zhao, Chenchen
AU  - Zhu, Xiaozhe
AU  - Mihucz, Victor G.
AU  - Minkina, Tatiana
AU  - Šolević Knudsen, Tatjana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4759
AB  - In this study, a polydopamine (PDA) modified attapulgite (ATP) supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI) was rapidly synthesized under acidic conditions, and employed to alleviate Cr(VI) toxicity from an aqueous solution. Kinetic studies revealed that Cr(VI) adsorption process followed the pseudo-second order model, suggesting chemisorption was the dominant adsorption mechanism. Liu isotherm adsorption model was able to better describe the Cr(VI) adsorption isotherm with the maximum adsorption capacity of 134.05 mg/g. The thermodynamic study demonstrated that the adsorption process occurred spontaneously, accompanied by the increase in entropy and endothermic reaction. Low concentrations of coexisting ions had negligible effects on the removal of Cr(VI), while high concentrations of interfering ions were able to facilitate the removal of Cr(VI). Reactive species test revealed that Fe2+ played a key role in Cr(VI) reduction by PDA/ATP-nZVI. PDA enhanced the elimination of Cr(VI) via donation of electrons to Cr(VI) and acceleration of Fe3+ transformation to Fe2+. Furthermore, PDA was able to effectively inhibit the leaching of iron species and generation of ferric hydroxide sludge. Mechanistic study revealed that 72% of Cr(VI) elimination was attributed to reduction/precipitation, while 28% of Cr(VI) elimination was due to the surface adsorption.
(1-4) in order to obtain adherence,
e.g.,
PB  - Elsevier
T2  - Chemosphere
T1  - Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism
VL  - 287
SP  - 131970
DO  - 10.1016/j.chemosphere.2021.131970
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Chen, Zhihui and Liu, Bang and Kim, Jonghyok and Zhao, Chenchen and Zhu, Xiaozhe and Mihucz, Victor G. and Minkina, Tatiana and Šolević Knudsen, Tatjana",
year = "2022",
abstract = "In this study, a polydopamine (PDA) modified attapulgite (ATP) supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI) was rapidly synthesized under acidic conditions, and employed to alleviate Cr(VI) toxicity from an aqueous solution. Kinetic studies revealed that Cr(VI) adsorption process followed the pseudo-second order model, suggesting chemisorption was the dominant adsorption mechanism. Liu isotherm adsorption model was able to better describe the Cr(VI) adsorption isotherm with the maximum adsorption capacity of 134.05 mg/g. The thermodynamic study demonstrated that the adsorption process occurred spontaneously, accompanied by the increase in entropy and endothermic reaction. Low concentrations of coexisting ions had negligible effects on the removal of Cr(VI), while high concentrations of interfering ions were able to facilitate the removal of Cr(VI). Reactive species test revealed that Fe2+ played a key role in Cr(VI) reduction by PDA/ATP-nZVI. PDA enhanced the elimination of Cr(VI) via donation of electrons to Cr(VI) and acceleration of Fe3+ transformation to Fe2+. Furthermore, PDA was able to effectively inhibit the leaching of iron species and generation of ferric hydroxide sludge. Mechanistic study revealed that 72% of Cr(VI) elimination was attributed to reduction/precipitation, while 28% of Cr(VI) elimination was due to the surface adsorption.
(1-4) in order to obtain adherence,
e.g.,",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism",
volume = "287",
pages = "131970",
doi = "10.1016/j.chemosphere.2021.131970"
}
Ma, B., Yao, J., Chen, Z., Liu, B., Kim, J., Zhao, C., Zhu, X., Mihucz, V. G., Minkina, T.,& Šolević Knudsen, T.. (2022). Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. in Chemosphere
Elsevier., 287, 131970.
https://doi.org/10.1016/j.chemosphere.2021.131970
Ma B, Yao J, Chen Z, Liu B, Kim J, Zhao C, Zhu X, Mihucz VG, Minkina T, Šolević Knudsen T. Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. in Chemosphere. 2022;287:131970.
doi:10.1016/j.chemosphere.2021.131970 .
Ma, Bo, Yao, Jun, Chen, Zhihui, Liu, Bang, Kim, Jonghyok, Zhao, Chenchen, Zhu, Xiaozhe, Mihucz, Victor G., Minkina, Tatiana, Šolević Knudsen, Tatjana, "Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism" in Chemosphere, 287 (2022):131970,
https://doi.org/10.1016/j.chemosphere.2021.131970 . .
26
24