Nikolić, Ines

Link to this page

Authority KeyName Variants
orcid::0000-0001-6534-0418
  • Nikolić, Ines (13)
Projects
Development of micro- and nanosystems as carriers for drugs with anti-inflammatory effect and methods for their characterization Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy) bilateral project between the Republic of Serbia and the Federal Republic of Germany (Biosurfactants and biopolysaccharides/film-forming polymers as cosmetic raw materials and prospective pharmaceutical excipients: formulation of colloidal and film-forming delivery systems)
Federal Republic of Germany Cell Cycle Aberrations and the Impact of Oxidative Stress in Neurodegenerative Processes and Malignant Transformation of the Cell
Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection Republic of Serbia
Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications Simultaneous Bioremediation and Soilification of Degraded Areas to Preserve Natural Resources of Biologically Active Substances, and Development and Production of Biomaterials and Dietetic Products
NanoCellEmoCog - Neuroimmune aspects of mood, anxiety and cognitive effects of leads/drug candidates acting at GABAA and/or sigma-2 receptors: In vitro/in vivo delineation by nano- and hiPSC-based platform London College of Fashion, University of the Arts London

Author's Bibliography

Sizing experiments and bio-nano interactions: method matters

Nikolić, Ines; Petrović, Marija; Krupnik, Leondard; Randjelović, Danijela; Avaro, Jonathan; Neels, Antonia; Borchard, Gerrit; Jordan, Olivier; Đoković, Jelena; Savić, Snežana

(2023)

TY  - CONF
AU  - Nikolić, Ines
AU  - Petrović, Marija
AU  - Krupnik, Leondard
AU  - Randjelović, Danijela
AU  - Avaro, Jonathan
AU  - Neels, Antonia
AU  - Borchard, Gerrit
AU  - Jordan, Olivier
AU  - Đoković, Jelena
AU  - Savić, Snežana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6419
AB  - The aim of the presented research was to perform a thorough analysis of the selected nanosystem (nanoemulsion) focusing on size estimation and particle-protein interaction applying several state-of-the art techniques, highlighting important factors for a reliable analysis.
T1  - Sizing experiments and bio-nano interactions: method matters
UR  - https://hdl.handle.net/21.15107/rcub_cer_6419
ER  - 
@conference{
author = "Nikolić, Ines and Petrović, Marija and Krupnik, Leondard and Randjelović, Danijela and Avaro, Jonathan and Neels, Antonia and Borchard, Gerrit and Jordan, Olivier and Đoković, Jelena and Savić, Snežana",
year = "2023",
abstract = "The aim of the presented research was to perform a thorough analysis of the selected nanosystem (nanoemulsion) focusing on size estimation and particle-protein interaction applying several state-of-the art techniques, highlighting important factors for a reliable analysis.",
title = "Sizing experiments and bio-nano interactions: method matters",
url = "https://hdl.handle.net/21.15107/rcub_cer_6419"
}
Nikolić, I., Petrović, M., Krupnik, L., Randjelović, D., Avaro, J., Neels, A., Borchard, G., Jordan, O., Đoković, J.,& Savić, S.. (2023). Sizing experiments and bio-nano interactions: method matters. .
https://hdl.handle.net/21.15107/rcub_cer_6419
Nikolić I, Petrović M, Krupnik L, Randjelović D, Avaro J, Neels A, Borchard G, Jordan O, Đoković J, Savić S. Sizing experiments and bio-nano interactions: method matters. 2023;.
https://hdl.handle.net/21.15107/rcub_cer_6419 .
Nikolić, Ines, Petrović, Marija, Krupnik, Leondard, Randjelović, Danijela, Avaro, Jonathan, Neels, Antonia, Borchard, Gerrit, Jordan, Olivier, Đoković, Jelena, Savić, Snežana, "Sizing experiments and bio-nano interactions: method matters" (2023),
https://hdl.handle.net/21.15107/rcub_cer_6419 .

Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study

Timotijević, Mirjana; Ilić, Tanja; Marković, Bojan; Randjelović, Danijela; Cekić, Nebojša; Nikolić, Ines; Savić, Snežana; Pantelić, Ivana

(MDPI, 2022)

TY  - JOUR
AU  - Timotijević, Mirjana
AU  - Ilić, Tanja
AU  - Marković, Bojan
AU  - Randjelović, Danijela
AU  - Cekić, Nebojša
AU  - Nikolić, Ines
AU  - Savić, Snežana
AU  - Pantelić, Ivana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5258
AB  - Polymeric film-forming systems have emerged as an esthetically acceptable option for targeted, less frequent and controlled dermal drug delivery. However, their dynamic nature (rapid evaporation of solvents leading to the formation of thin films) presents a true characterization chal- lenge. In this study, we tested a tiered characterization approach, leading to more efficient definition of the quality target product profiles of film-forming systems. After assessing a number of physico- chemico-mechanical properties, thermal, spectroscopic and microscopic techniques were introduced. Final confirmation of betamethasone dipropionate-loaded FFS biopharmaceutical properties was sought via an in vitro skin permeation study. A number of applied characterization methods showed complementarity. The sample based on a combination of hydrophobic Eudragit® RS PO and hy- droxypropyl cellulose showed higher viscosity (47.17 ± 3.06 mPa·s) and film thickness, resulting in sustained skin permeation (permeation rate of 0.348 ± 0.157 ng/cm2 h), and even the pH of the sample with Eudragit® NE 30D, along with higher surface roughness and thermal analysis, implied its immediate delivery through the epidermal membrane. Therefore, this study revealed the utility of several methods able to refine the number of needed tests within the final product profile.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study
VL  - 23
IS  - 11
DO  - 10.3390/ijms23116013
ER  - 
@article{
author = "Timotijević, Mirjana and Ilić, Tanja and Marković, Bojan and Randjelović, Danijela and Cekić, Nebojša and Nikolić, Ines and Savić, Snežana and Pantelić, Ivana",
year = "2022",
abstract = "Polymeric film-forming systems have emerged as an esthetically acceptable option for targeted, less frequent and controlled dermal drug delivery. However, their dynamic nature (rapid evaporation of solvents leading to the formation of thin films) presents a true characterization chal- lenge. In this study, we tested a tiered characterization approach, leading to more efficient definition of the quality target product profiles of film-forming systems. After assessing a number of physico- chemico-mechanical properties, thermal, spectroscopic and microscopic techniques were introduced. Final confirmation of betamethasone dipropionate-loaded FFS biopharmaceutical properties was sought via an in vitro skin permeation study. A number of applied characterization methods showed complementarity. The sample based on a combination of hydrophobic Eudragit® RS PO and hy- droxypropyl cellulose showed higher viscosity (47.17 ± 3.06 mPa·s) and film thickness, resulting in sustained skin permeation (permeation rate of 0.348 ± 0.157 ng/cm2 h), and even the pH of the sample with Eudragit® NE 30D, along with higher surface roughness and thermal analysis, implied its immediate delivery through the epidermal membrane. Therefore, this study revealed the utility of several methods able to refine the number of needed tests within the final product profile.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study",
volume = "23",
number = "11",
doi = "10.3390/ijms23116013"
}
Timotijević, M., Ilić, T., Marković, B., Randjelović, D., Cekić, N., Nikolić, I., Savić, S.,& Pantelić, I.. (2022). Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study. in International Journal of Molecular Sciences
MDPI., 23(11).
https://doi.org/10.3390/ijms23116013
Timotijević M, Ilić T, Marković B, Randjelović D, Cekić N, Nikolić I, Savić S, Pantelić I. Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study. in International Journal of Molecular Sciences. 2022;23(11).
doi:10.3390/ijms23116013 .
Timotijević, Mirjana, Ilić, Tanja, Marković, Bojan, Randjelović, Danijela, Cekić, Nebojša, Nikolić, Ines, Savić, Snežana, Pantelić, Ivana, "Coupling AFM, DSC and FT-IR towards Elucidation of Film-Forming Systems Transformation to Dermal Films: A Betamethasone Dipropionate Case Study" in International Journal of Molecular Sciences, 23, no. 11 (2022),
https://doi.org/10.3390/ijms23116013 . .
1
1

Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance

Gledović, Ana; Janošević Ležaić, Aleksandra; Nikolić, Ines; Tasić-Kostov, Marija Z.; Antić-Stanković, Jelena; Krstonošić, Veljko S.; Randjelović, Danijela; Božić, Dragana; Ilić, Dušan; Tamburić, Slobodanka D.; Savić, Snežana

(MDPI, 2021)

TY  - JOUR
AU  - Gledović, Ana
AU  - Janošević Ležaić, Aleksandra
AU  - Nikolić, Ines
AU  - Tasić-Kostov, Marija Z.
AU  - Antić-Stanković, Jelena
AU  - Krstonošić, Veljko S.
AU  - Randjelović, Danijela
AU  - Božić, Dragana
AU  - Ilić, Dušan
AU  - Tamburić, Slobodanka D.
AU  - Savić, Snežana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4243
AB  - This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions
based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO
and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions
were obtained via phase inversion composition (PIC) method at room temperature by dilution of
microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic,
rheological and differential scanning calorimetry (DSC) investigations. The results have shown that
the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from
red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet
size (Z-ave: 50 to 70 nm, PDI value _ 0.1). The highest antioxidant activity (~92% inhibition of the
DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic
antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased
the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal
human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles
and significant improvement in skin hydration during 2 h after application for all nanoemulsions.
Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red
raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin
protection and hydration.
PB  - MDPI
T2  - Nanomaterials
T1  - Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance
VL  - 11
IS  - 1
SP  - 1
EP  - 21
DO  - 10.3390/nano11010217
ER  - 
@article{
author = "Gledović, Ana and Janošević Ležaić, Aleksandra and Nikolić, Ines and Tasić-Kostov, Marija Z. and Antić-Stanković, Jelena and Krstonošić, Veljko S. and Randjelović, Danijela and Božić, Dragana and Ilić, Dušan and Tamburić, Slobodanka D. and Savić, Snežana",
year = "2021",
abstract = "This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions
based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO
and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions
were obtained via phase inversion composition (PIC) method at room temperature by dilution of
microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic,
rheological and differential scanning calorimetry (DSC) investigations. The results have shown that
the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from
red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet
size (Z-ave: 50 to 70 nm, PDI value _ 0.1). The highest antioxidant activity (~92% inhibition of the
DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic
antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased
the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal
human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles
and significant improvement in skin hydration during 2 h after application for all nanoemulsions.
Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red
raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin
protection and hydration.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance",
volume = "11",
number = "1",
pages = "1-21",
doi = "10.3390/nano11010217"
}
Gledović, A., Janošević Ležaić, A., Nikolić, I., Tasić-Kostov, M. Z., Antić-Stanković, J., Krstonošić, V. S., Randjelović, D., Božić, D., Ilić, D., Tamburić, S. D.,& Savić, S.. (2021). Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. in Nanomaterials
MDPI., 11(1), 1-21.
https://doi.org/10.3390/nano11010217
Gledović A, Janošević Ležaić A, Nikolić I, Tasić-Kostov MZ, Antić-Stanković J, Krstonošić VS, Randjelović D, Božić D, Ilić D, Tamburić SD, Savić S. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. in Nanomaterials. 2021;11(1):1-21.
doi:10.3390/nano11010217 .
Gledović, Ana, Janošević Ležaić, Aleksandra, Nikolić, Ines, Tasić-Kostov, Marija Z., Antić-Stanković, Jelena, Krstonošić, Veljko S., Randjelović, Danijela, Božić, Dragana, Ilić, Dušan, Tamburić, Slobodanka D., Savić, Snežana, "Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance" in Nanomaterials, 11, no. 1 (2021):1-21,
https://doi.org/10.3390/nano11010217 . .
3
14
3
13

Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats

Ðoković, Jelena B.; Savić, Sanela M.; Mitrović, Jelena R.; Nikolić, Ines; Marković, Bojan D.; Randjelović, Danijela; Antić-Stanković, Jelena; Božić, Dragana; Cekić, Nebojša D.; Stevanović, Vladimir; Batinić, Bojan; Aranđelović, Jovana; Savić, Miroslav M.; Savić, Snežana D.

(MDPI, 2021)

TY  - JOUR
AU  - Ðoković, Jelena B.
AU  - Savić, Sanela M.
AU  - Mitrović, Jelena R.
AU  - Nikolić, Ines
AU  - Marković, Bojan D.
AU  - Randjelović, Danijela
AU  - Antić-Stanković, Jelena
AU  - Božić, Dragana
AU  - Cekić, Nebojša D.
AU  - Stevanović, Vladimir
AU  - Batinić, Bojan
AU  - Aranđelović, Jovana
AU  - Savić, Miroslav M.
AU  - Savić, Snežana D.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4822
AB  - The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats
VL  - 22
IS  - 15
IS  - 7991
DO  - 10.3390/ijms22157991
ER  - 
@article{
author = "Ðoković, Jelena B. and Savić, Sanela M. and Mitrović, Jelena R. and Nikolić, Ines and Marković, Bojan D. and Randjelović, Danijela and Antić-Stanković, Jelena and Božić, Dragana and Cekić, Nebojša D. and Stevanović, Vladimir and Batinić, Bojan and Aranđelović, Jovana and Savić, Miroslav M. and Savić, Snežana D.",
year = "2021",
abstract = "The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats",
volume = "22",
number = "15, 7991",
doi = "10.3390/ijms22157991"
}
Ðoković, J. B., Savić, S. M., Mitrović, J. R., Nikolić, I., Marković, B. D., Randjelović, D., Antić-Stanković, J., Božić, D., Cekić, N. D., Stevanović, V., Batinić, B., Aranđelović, J., Savić, M. M.,& Savić, S. D.. (2021). Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. in International Journal of Molecular Sciences
MDPI., 22(15).
https://doi.org/10.3390/ijms22157991
Ðoković JB, Savić SM, Mitrović JR, Nikolić I, Marković BD, Randjelović D, Antić-Stanković J, Božić D, Cekić ND, Stevanović V, Batinić B, Aranđelović J, Savić MM, Savić SD. Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. in International Journal of Molecular Sciences. 2021;22(15).
doi:10.3390/ijms22157991 .
Ðoković, Jelena B., Savić, Sanela M., Mitrović, Jelena R., Nikolić, Ines, Marković, Bojan D., Randjelović, Danijela, Antić-Stanković, Jelena, Božić, Dragana, Cekić, Nebojša D., Stevanović, Vladimir, Batinić, Bojan, Aranđelović, Jovana, Savić, Miroslav M., Savić, Snežana D., "Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats" in International Journal of Molecular Sciences, 22, no. 15 (2021),
https://doi.org/10.3390/ijms22157991 . .
18
18

Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals

Nikolić, Ines; Antić-Stanković, Jelena; Božić, Dragana; Randjelović, Danijela; Marković, Bojan D.; Lunter, Dominique Jasmin; Kremenović, Aleksandar; Savić, Miroslav M.; Savić, Snežana

(Walter de Gruyter GmbH, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Antić-Stanković, Jelena
AU  - Božić, Dragana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Lunter, Dominique Jasmin
AU  - Kremenović, Aleksandar
AU  - Savić, Miroslav M.
AU  - Savić, Snežana
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3711
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3720
AB  - As the number of poorly soluble drugs is increasing, nanocrystals have become very interesting due to wide range of application possibilities. Curcuminwas used as a model active ingredient in this work. Even though it has many proven positive effects, due to its physicochemical issues, its possibilities have not been fully exploited. The goal of this work was to select optimal conditions for a top-down method for curcumin nanosuspension production, and to perform their comprehensive characterization applying complementary methodologies: dynamic light scattering, polarization and atomic force microscopy, thermal analysis, X-ray powder diffraction, antioxidant activity evaluation, release kinetics assessment, and screening of potential biological effects applying cell viability assays on normal human lung fibroblasts, human melanoma and human adenomacarcinoma cells. After 30 min of milling, nanosuspensions stabilized by polysorbate 80 and by its combinations with sucrose palmitate showed good stability, while curcumin crystal structure was unaltered. Obtained nanocrystals were well defined, with average diameter 120-170 nm and PDI of about 0.25, zeta potential was below -30 mV and pH~5 for all formulations. Nanodispersions exhibited high antioxidant potential and improved dissolution rate compared to the corresponding coarse dispersions. Although curcumin nanodispersions exhibited significant antiproliferative effect to each cancer cell line, the highest effect was towards adenocarcinoma cells.
PB  - Walter de Gruyter GmbH
T2  - Reviews on Advanced Materials Science
T1  - Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals
VL  - 59
IS  - 1
SP  - 406
EP  - 424
DO  - 10.1515/rams-2020-0043
ER  - 
@article{
author = "Nikolić, Ines and Antić-Stanković, Jelena and Božić, Dragana and Randjelović, Danijela and Marković, Bojan D. and Lunter, Dominique Jasmin and Kremenović, Aleksandar and Savić, Miroslav M. and Savić, Snežana",
year = "2020",
abstract = "As the number of poorly soluble drugs is increasing, nanocrystals have become very interesting due to wide range of application possibilities. Curcuminwas used as a model active ingredient in this work. Even though it has many proven positive effects, due to its physicochemical issues, its possibilities have not been fully exploited. The goal of this work was to select optimal conditions for a top-down method for curcumin nanosuspension production, and to perform their comprehensive characterization applying complementary methodologies: dynamic light scattering, polarization and atomic force microscopy, thermal analysis, X-ray powder diffraction, antioxidant activity evaluation, release kinetics assessment, and screening of potential biological effects applying cell viability assays on normal human lung fibroblasts, human melanoma and human adenomacarcinoma cells. After 30 min of milling, nanosuspensions stabilized by polysorbate 80 and by its combinations with sucrose palmitate showed good stability, while curcumin crystal structure was unaltered. Obtained nanocrystals were well defined, with average diameter 120-170 nm and PDI of about 0.25, zeta potential was below -30 mV and pH~5 for all formulations. Nanodispersions exhibited high antioxidant potential and improved dissolution rate compared to the corresponding coarse dispersions. Although curcumin nanodispersions exhibited significant antiproliferative effect to each cancer cell line, the highest effect was towards adenocarcinoma cells.",
publisher = "Walter de Gruyter GmbH",
journal = "Reviews on Advanced Materials Science",
title = "Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals",
volume = "59",
number = "1",
pages = "406-424",
doi = "10.1515/rams-2020-0043"
}
Nikolić, I., Antić-Stanković, J., Božić, D., Randjelović, D., Marković, B. D., Lunter, D. J., Kremenović, A., Savić, M. M.,& Savić, S.. (2020). Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals. in Reviews on Advanced Materials Science
Walter de Gruyter GmbH., 59(1), 406-424.
https://doi.org/10.1515/rams-2020-0043
Nikolić I, Antić-Stanković J, Božić D, Randjelović D, Marković BD, Lunter DJ, Kremenović A, Savić MM, Savić S. Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals. in Reviews on Advanced Materials Science. 2020;59(1):406-424.
doi:10.1515/rams-2020-0043 .
Nikolić, Ines, Antić-Stanković, Jelena, Božić, Dragana, Randjelović, Danijela, Marković, Bojan D., Lunter, Dominique Jasmin, Kremenović, Aleksandar, Savić, Miroslav M., Savić, Snežana, "Curcumin Nanonization Using An Alternative Small-Scale Production Unit: Selection of Proper Stabilizer Applying Basic Physicochemical Consideration and Biological Activity Assessment of Nanocrystals" in Reviews on Advanced Materials Science, 59, no. 1 (2020):406-424,
https://doi.org/10.1515/rams-2020-0043 . .

Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity

Gledović, Ana; Janošević Ležaić, Aleksandra; Krstonosic, Veljko; Djokovic, Jelena; Nikolić, Ines; Bajuk-Bogdanovic, Danica; Antić Stanković, Jelena; Randjelović, Danijela; Savić, Sanela M.; Filipović, Mila; Tamburic, Slobodanka; Savić, Snežana D.

(Public Library of Science (PLoS), 2020)

TY  - JOUR
AU  - Gledović, Ana
AU  - Janošević Ležaić, Aleksandra
AU  - Krstonosic, Veljko
AU  - Djokovic, Jelena
AU  - Nikolić, Ines
AU  - Bajuk-Bogdanovic, Danica
AU  - Antić Stanković, Jelena
AU  - Randjelović, Danijela
AU  - Savić, Sanela M.
AU  - Filipović, Mila
AU  - Tamburic, Slobodanka
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3516
AB  - Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs. non-organic, refined vs. unrefined. The oil phase was optimized with Tocopheryl acetate and Isostearyl isostearate, while water phase was adjusted with either glycerol or an antioxidant hydro-glycolic extract. This study has used a combined approach to formulation development, employing both conventional methods (pseudo-ternary phase diagram − PTPD, electrical conductivity, particle size measurements, microscopical analysis, and rheological measurements) and the methods novel to this area, such as textural analysis and Raman spectroscopy. Raman spectroscopy has detected fine differences in chemical composition among ROs, and it detected the interactions within nanoemulsions. It was shown that the cold-pressed, unrefined, organic grade oil (RO2) with 6.62% saturated fatty acids and 92.25% unsaturated fatty acids, was optimal for the LE-NEs. Textural analysis confirmed the existence of cubic gel-like phase as a crucial step in the formation of stable RO2-loaded LE-NEs, with droplets in the narrow nano-range (125 to 135 nm; PDI ≤ 0.1). The DPPH test in methanol and ABTS in aqueous medium have revealed a synergistic free radical scavenging effect between lipophilic and hydrophilic antioxidants in LE-NEs. The nanoemulsion carrier has improved the biological effect of raw materials on HeLa cervical adenocarcinoma cells, while exhibiting good safety profile, as confirmed on MRC-5 normal human lung fibroblasts. Overall, this study has shown that low-energy nanoemulsions present very promising carriers for topical delivery of natural bioactives. Raman spectroscopy and textural analysis have proven to be a useful addition to the arsenal of methods used in the formulation and characterization of nanoemulsion systems.
PB  - Public Library of Science (PLoS)
T2  - PLOS ONE
T1  - Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity
VL  - 15
IS  - 4
SP  - e0230993
DO  - 10.1371/journal.pone.0230993
ER  - 
@article{
author = "Gledović, Ana and Janošević Ležaić, Aleksandra and Krstonosic, Veljko and Djokovic, Jelena and Nikolić, Ines and Bajuk-Bogdanovic, Danica and Antić Stanković, Jelena and Randjelović, Danijela and Savić, Sanela M. and Filipović, Mila and Tamburic, Slobodanka and Savić, Snežana D.",
year = "2020",
abstract = "Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs. non-organic, refined vs. unrefined. The oil phase was optimized with Tocopheryl acetate and Isostearyl isostearate, while water phase was adjusted with either glycerol or an antioxidant hydro-glycolic extract. This study has used a combined approach to formulation development, employing both conventional methods (pseudo-ternary phase diagram − PTPD, electrical conductivity, particle size measurements, microscopical analysis, and rheological measurements) and the methods novel to this area, such as textural analysis and Raman spectroscopy. Raman spectroscopy has detected fine differences in chemical composition among ROs, and it detected the interactions within nanoemulsions. It was shown that the cold-pressed, unrefined, organic grade oil (RO2) with 6.62% saturated fatty acids and 92.25% unsaturated fatty acids, was optimal for the LE-NEs. Textural analysis confirmed the existence of cubic gel-like phase as a crucial step in the formation of stable RO2-loaded LE-NEs, with droplets in the narrow nano-range (125 to 135 nm; PDI ≤ 0.1). The DPPH test in methanol and ABTS in aqueous medium have revealed a synergistic free radical scavenging effect between lipophilic and hydrophilic antioxidants in LE-NEs. The nanoemulsion carrier has improved the biological effect of raw materials on HeLa cervical adenocarcinoma cells, while exhibiting good safety profile, as confirmed on MRC-5 normal human lung fibroblasts. Overall, this study has shown that low-energy nanoemulsions present very promising carriers for topical delivery of natural bioactives. Raman spectroscopy and textural analysis have proven to be a useful addition to the arsenal of methods used in the formulation and characterization of nanoemulsion systems.",
publisher = "Public Library of Science (PLoS)",
journal = "PLOS ONE",
title = "Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity",
volume = "15",
number = "4",
pages = "e0230993",
doi = "10.1371/journal.pone.0230993"
}
Gledović, A., Janošević Ležaić, A., Krstonosic, V., Djokovic, J., Nikolić, I., Bajuk-Bogdanovic, D., Antić Stanković, J., Randjelović, D., Savić, S. M., Filipović, M., Tamburic, S.,& Savić, S. D.. (2020). Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity. in PLOS ONE
Public Library of Science (PLoS)., 15(4), e0230993.
https://doi.org/10.1371/journal.pone.0230993
Gledović A, Janošević Ležaić A, Krstonosic V, Djokovic J, Nikolić I, Bajuk-Bogdanovic D, Antić Stanković J, Randjelović D, Savić SM, Filipović M, Tamburic S, Savić SD. Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity. in PLOS ONE. 2020;15(4):e0230993.
doi:10.1371/journal.pone.0230993 .
Gledović, Ana, Janošević Ležaić, Aleksandra, Krstonosic, Veljko, Djokovic, Jelena, Nikolić, Ines, Bajuk-Bogdanovic, Danica, Antić Stanković, Jelena, Randjelović, Danijela, Savić, Sanela M., Filipović, Mila, Tamburic, Slobodanka, Savić, Snežana D., "Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity" in PLOS ONE, 15, no. 4 (2020):e0230993,
https://doi.org/10.1371/journal.pone.0230993 . .
1
21
6
20

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3386
AB  - The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3309
AB  - he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application

Pantelić, Ivana; Lukić, Milica; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Nikolić, Ines; Jasmin Lunterc, Dominique; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Pantelić, Ivana
AU  - Lukić, Milica
AU  - Gojgić-Cvijović, Gordana
AU  - Jakovljević, Dragica
AU  - Nikolić, Ines
AU  - Jasmin Lunterc, Dominique
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3349
AB  - Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s−1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application
VL  - 142
SP  - 105109
DO  - 10.1016/j.ejps.2019.105109
ER  - 
@article{
author = "Pantelić, Ivana and Lukić, Milica and Gojgić-Cvijović, Gordana and Jakovljević, Dragica and Nikolić, Ines and Jasmin Lunterc, Dominique and Daniels, Rolf and Savić, Snežana D.",
year = "2020",
abstract = "Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s−1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application",
volume = "142",
pages = "105109",
doi = "10.1016/j.ejps.2019.105109"
}
Pantelić, I., Lukić, M., Gojgić-Cvijović, G., Jakovljević, D., Nikolić, I., Jasmin Lunterc, D., Daniels, R.,& Savić, S. D.. (2020). Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105109.
https://doi.org/10.1016/j.ejps.2019.105109
Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Jasmin Lunterc D, Daniels R, Savić SD. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. in European Journal of Pharmaceutical Sciences. 2020;142:105109.
doi:10.1016/j.ejps.2019.105109 .
Pantelić, Ivana, Lukić, Milica, Gojgić-Cvijović, Gordana, Jakovljević, Dragica, Nikolić, Ines, Jasmin Lunterc, Dominique, Daniels, Rolf, Savić, Snežana D., "Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application" in European Journal of Pharmaceutical Sciences, 142 (2020):105109,
https://doi.org/10.1016/j.ejps.2019.105109 . .
25
6
24

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4291
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3719
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2360
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2425
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28