Tenji, Dina

Link to this page

Authority KeyName Variants
679f13d9-a8fc-464b-9e5b-5e6df5ac8e8f
  • Tenji, Dina (1)
Projects

Author's Bibliography

Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms

Đukanović, Stefana; Ganić, Tea; Lončarević, Branka; Cvetković, Stefana; Nikolić, Biljana; Tenji, Dina; Randjelović, Danijela; Mitić-Ćulafić, Dragana

(Wiley, 2022)

TY  - JOUR
AU  - Đukanović, Stefana
AU  - Ganić, Tea
AU  - Lončarević, Branka
AU  - Cvetković, Stefana
AU  - Nikolić, Biljana
AU  - Tenji, Dina
AU  - Randjelović, Danijela
AU  - Mitić-Ćulafić, Dragana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5590
AB  - Aims Because the Staphylococcus aureus is one of the most well‐known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it.  Methods and Results Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro‐Oxymax respirometer. For investigation of gene expression qRT‐PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT‐PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain‐specific.  Conclusion The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action.  Significance and Impact of Study This is the first study that examined pathways through which emodin expressed its antibiofilm activity
PB  - Wiley
T2  - Journal of Applied Microbiology
T1  - Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms
VL  - 132
IS  - 3
SP  - 1840
EP  - 1855
DO  - 10.1111/jam.15360
ER  - 
@article{
author = "Đukanović, Stefana and Ganić, Tea and Lončarević, Branka and Cvetković, Stefana and Nikolić, Biljana and Tenji, Dina and Randjelović, Danijela and Mitić-Ćulafić, Dragana",
year = "2022",
abstract = "Aims Because the Staphylococcus aureus is one of the most well‐known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it.  Methods and Results Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro‐Oxymax respirometer. For investigation of gene expression qRT‐PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT‐PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain‐specific.  Conclusion The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action.  Significance and Impact of Study This is the first study that examined pathways through which emodin expressed its antibiofilm activity",
publisher = "Wiley",
journal = "Journal of Applied Microbiology",
title = "Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms",
volume = "132",
number = "3",
pages = "1840-1855",
doi = "10.1111/jam.15360"
}
Đukanović, S., Ganić, T., Lončarević, B., Cvetković, S., Nikolić, B., Tenji, D., Randjelović, D.,& Mitić-Ćulafić, D.. (2022). Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms. in Journal of Applied Microbiology
Wiley., 132(3), 1840-1855.
https://doi.org/10.1111/jam.15360
Đukanović S, Ganić T, Lončarević B, Cvetković S, Nikolić B, Tenji D, Randjelović D, Mitić-Ćulafić D. Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms. in Journal of Applied Microbiology. 2022;132(3):1840-1855.
doi:10.1111/jam.15360 .
Đukanović, Stefana, Ganić, Tea, Lončarević, Branka, Cvetković, Stefana, Nikolić, Biljana, Tenji, Dina, Randjelović, Danijela, Mitić-Ćulafić, Dragana, "Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms" in Journal of Applied Microbiology, 132, no. 3 (2022):1840-1855,
https://doi.org/10.1111/jam.15360 . .
2
11
11