Zhu, Yisi

Link to this page

Authority KeyName Variants
orcid::0000-0001-6186-3764
  • Zhu, Yisi (4)
Projects

Author's Bibliography

Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction

Chung, Dong Young; Lopes, Pietro Papa; Farinazzo Bergamo Dias Martins, Pedro; He, Haiying; Kawaguchi, Tomoya; Zapol, Peter; You, Hoydoo; Tripković, Dušan; Strmcnik, Dusan; Zhu, Yisi; Seifert, Soenke; Lee, Sungsik; Stamenković, Vojislav; Marković, Nenad M.

(Springer Science and Business Media LLC, 2020)

TY  - JOUR
AU  - Chung, Dong Young
AU  - Lopes, Pietro Papa
AU  - Farinazzo Bergamo Dias Martins, Pedro
AU  - He, Haiying
AU  - Kawaguchi, Tomoya
AU  - Zapol, Peter
AU  - You, Hoydoo
AU  - Tripković, Dušan
AU  - Strmcnik, Dusan
AU  - Zhu, Yisi
AU  - Seifert, Soenke
AU  - Lee, Sungsik
AU  - Stamenković, Vojislav
AU  - Marković, Nenad M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3485
AB  - The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.
PB  - Springer Science and Business Media LLC
T2  - Nature Energy
T1  - Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
VL  - 5
IS  - 3
SP  - 222
EP  - 230
DO  - 10.1038/s41560-020-0576-y
ER  - 
@article{
author = "Chung, Dong Young and Lopes, Pietro Papa and Farinazzo Bergamo Dias Martins, Pedro and He, Haiying and Kawaguchi, Tomoya and Zapol, Peter and You, Hoydoo and Tripković, Dušan and Strmcnik, Dusan and Zhu, Yisi and Seifert, Soenke and Lee, Sungsik and Stamenković, Vojislav and Marković, Nenad M.",
year = "2020",
abstract = "The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.",
publisher = "Springer Science and Business Media LLC",
journal = "Nature Energy",
title = "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction",
volume = "5",
number = "3",
pages = "222-230",
doi = "10.1038/s41560-020-0576-y"
}
Chung, D. Y., Lopes, P. P., Farinazzo Bergamo Dias Martins, P., He, H., Kawaguchi, T., Zapol, P., You, H., Tripković, D., Strmcnik, D., Zhu, Y., Seifert, S., Lee, S., Stamenković, V.,& Marković, N. M.. (2020). Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy
Springer Science and Business Media LLC., 5(3), 222-230.
https://doi.org/10.1038/s41560-020-0576-y
Chung DY, Lopes PP, Farinazzo Bergamo Dias Martins P, He H, Kawaguchi T, Zapol P, You H, Tripković D, Strmcnik D, Zhu Y, Seifert S, Lee S, Stamenković V, Marković NM. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy. 2020;5(3):222-230.
doi:10.1038/s41560-020-0576-y .
Chung, Dong Young, Lopes, Pietro Papa, Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripković, Dušan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenković, Vojislav, Marković, Nenad M., "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction" in Nature Energy, 5, no. 3 (2020):222-230,
https://doi.org/10.1038/s41560-020-0576-y . .
62
565
175
516

Eliminating dissolution of platinum-based electrocatalysts at the atomic scale

Lopes, Pietro; Li, Dongguo; Lv, Haifeng; Wang, Chao; Tripković, Dušan; Zhu, Yisi; Schimmenti, Roberto; Daimon, Hideo; Kang, Yijin; Snyder, Joshua; Becknell, Nigel; More, Karren; Strmcnik, Dusan; Marković, Nenad M.; Mavrikakis, Manos; Stamenković, Vojislav

(Nature Publishing Group, 2020)

TY  - JOUR
AU  - Lopes, Pietro
AU  - Li, Dongguo
AU  - Lv, Haifeng
AU  - Wang, Chao
AU  - Tripković, Dušan
AU  - Zhu, Yisi
AU  - Schimmenti, Roberto
AU  - Daimon, Hideo
AU  - Kang, Yijin
AU  - Snyder, Joshua
AU  - Becknell, Nigel
AU  - More, Karren
AU  - Strmcnik, Dusan
AU  - Marković, Nenad M.
AU  - Mavrikakis, Manos
AU  - Stamenković, Vojislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3698
AB  - A remaining challenge for deployment of proton-exchange membrane fuel cells is the
limited durability of Pt-nanoscale materials that operate at high voltages during the
cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined
single crystalline, thin-film, and nanoscale surfaces exposed Pt dissolution trends that
governed the design and synthesis of durable materials. A newly defined metric, intrinsic
dissolution, is essential to understanding the correlation between the measured Pt loss,
surface structure, size and ratio of Pt-nanoparticles in carbon support. It was found that utilization of Au underlayer promotes ordering of Pt surface atoms towards (111)- structure, while Au on the surface selectively protects low-coordinated Pt sites. This
mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles, resulting in
elimination of Pt dissolution in liquid electrolyte, including 30-fold durability improvement
vs. 3 nm Pt/C over extended potential range up to 1.2 V.
PB  - Nature Publishing Group
T2  - Nature Materials
T1  - Eliminating dissolution of platinum-based electrocatalysts at the atomic scale
VL  - 19
SP  - 1207
EP  - 1214
DO  - 10.1038/s41563-020-0735-3
ER  - 
@article{
author = "Lopes, Pietro and Li, Dongguo and Lv, Haifeng and Wang, Chao and Tripković, Dušan and Zhu, Yisi and Schimmenti, Roberto and Daimon, Hideo and Kang, Yijin and Snyder, Joshua and Becknell, Nigel and More, Karren and Strmcnik, Dusan and Marković, Nenad M. and Mavrikakis, Manos and Stamenković, Vojislav",
year = "2020",
abstract = "A remaining challenge for deployment of proton-exchange membrane fuel cells is the
limited durability of Pt-nanoscale materials that operate at high voltages during the
cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined
single crystalline, thin-film, and nanoscale surfaces exposed Pt dissolution trends that
governed the design and synthesis of durable materials. A newly defined metric, intrinsic
dissolution, is essential to understanding the correlation between the measured Pt loss,
surface structure, size and ratio of Pt-nanoparticles in carbon support. It was found that utilization of Au underlayer promotes ordering of Pt surface atoms towards (111)- structure, while Au on the surface selectively protects low-coordinated Pt sites. This
mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles, resulting in
elimination of Pt dissolution in liquid electrolyte, including 30-fold durability improvement
vs. 3 nm Pt/C over extended potential range up to 1.2 V.",
publisher = "Nature Publishing Group",
journal = "Nature Materials",
title = "Eliminating dissolution of platinum-based electrocatalysts at the atomic scale",
volume = "19",
pages = "1207-1214",
doi = "10.1038/s41563-020-0735-3"
}
Lopes, P., Li, D., Lv, H., Wang, C., Tripković, D., Zhu, Y., Schimmenti, R., Daimon, H., Kang, Y., Snyder, J., Becknell, N., More, K., Strmcnik, D., Marković, N. M., Mavrikakis, M.,& Stamenković, V.. (2020). Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. in Nature Materials
Nature Publishing Group., 19, 1207-1214.
https://doi.org/10.1038/s41563-020-0735-3
Lopes P, Li D, Lv H, Wang C, Tripković D, Zhu Y, Schimmenti R, Daimon H, Kang Y, Snyder J, Becknell N, More K, Strmcnik D, Marković NM, Mavrikakis M, Stamenković V. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. in Nature Materials. 2020;19:1207-1214.
doi:10.1038/s41563-020-0735-3 .
Lopes, Pietro, Li, Dongguo, Lv, Haifeng, Wang, Chao, Tripković, Dušan, Zhu, Yisi, Schimmenti, Roberto, Daimon, Hideo, Kang, Yijin, Snyder, Joshua, Becknell, Nigel, More, Karren, Strmcnik, Dusan, Marković, Nenad M., Mavrikakis, Manos, Stamenković, Vojislav, "Eliminating dissolution of platinum-based electrocatalysts at the atomic scale" in Nature Materials, 19 (2020):1207-1214,
https://doi.org/10.1038/s41563-020-0735-3 . .
78
137
45
123

Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction

Chung, Dong Young; Lopes, Pietro; Farinazzo Bergamo Dias Martins, Pedro; He, Haiying; Kawaguchi, Tomoya; Zapol, Peter; You, Hoydoo; Tripković, Dušan; Strmcnik, Dusan; Zhu, Yisi; Seifert, Soenke; Lee, Sungsik; Stamenković, Vojislav; Marković, Nenad M.

(Springer Science and Business Media LLC, 2020)

TY  - JOUR
AU  - Chung, Dong Young
AU  - Lopes, Pietro
AU  - Farinazzo Bergamo Dias Martins, Pedro
AU  - He, Haiying
AU  - Kawaguchi, Tomoya
AU  - Zapol, Peter
AU  - You, Hoydoo
AU  - Tripković, Dušan
AU  - Strmcnik, Dusan
AU  - Zhu, Yisi
AU  - Seifert, Soenke
AU  - Lee, Sungsik
AU  - Stamenković, Vojislav
AU  - Marković, Nenad M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3700
AB  - The poor activity and stability of electrode materials for the oxygen evolution reaction (OER) are the main bottlenecks in the water splitting reaction for H2 production. Here, by studying activity
stability trends for the OER on conductive M1OxHy, Fe-M1OxHy and Fe-M1M2OxHy
hydr(oxy)oxide clusters (M1= Ni, Co, Fe; M2= Mn, Co, Cu), we show that balancing the rates of
Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites.
Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the
 MOxHy host is the key to control the average number of Fe active sites present at the solid-liquid
 interface. We suggest that the Fe-M adsorption energy can therefore serve as a reaction
 descriptor that unifies OER catalysis on 3d transition metal hydr(oxy)oxides in alkaline media.
 Thus, introduction of dynamically stable active sites extends the design rules for making active
 and stable interfaces.
PB  - Springer Science and Business Media LLC
T2  - Nature Energy
T1  - Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
VL  - 5
VL  - 230
IS  - 3
SP  - 222
EP  - 230
DO  - 10.1038/s41560-020-0576-y
ER  - 
@article{
author = "Chung, Dong Young and Lopes, Pietro and Farinazzo Bergamo Dias Martins, Pedro and He, Haiying and Kawaguchi, Tomoya and Zapol, Peter and You, Hoydoo and Tripković, Dušan and Strmcnik, Dusan and Zhu, Yisi and Seifert, Soenke and Lee, Sungsik and Stamenković, Vojislav and Marković, Nenad M.",
year = "2020",
abstract = "The poor activity and stability of electrode materials for the oxygen evolution reaction (OER) are the main bottlenecks in the water splitting reaction for H2 production. Here, by studying activity
stability trends for the OER on conductive M1OxHy, Fe-M1OxHy and Fe-M1M2OxHy
hydr(oxy)oxide clusters (M1= Ni, Co, Fe; M2= Mn, Co, Cu), we show that balancing the rates of
Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites.
Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the
 MOxHy host is the key to control the average number of Fe active sites present at the solid-liquid
 interface. We suggest that the Fe-M adsorption energy can therefore serve as a reaction
 descriptor that unifies OER catalysis on 3d transition metal hydr(oxy)oxides in alkaline media.
 Thus, introduction of dynamically stable active sites extends the design rules for making active
 and stable interfaces.",
publisher = "Springer Science and Business Media LLC",
journal = "Nature Energy",
title = "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction",
volume = "5, 230",
number = "3",
pages = "222-230",
doi = "10.1038/s41560-020-0576-y"
}
Chung, D. Y., Lopes, P., Farinazzo Bergamo Dias Martins, P., He, H., Kawaguchi, T., Zapol, P., You, H., Tripković, D., Strmcnik, D., Zhu, Y., Seifert, S., Lee, S., Stamenković, V.,& Marković, N. M.. (2020). Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy
Springer Science and Business Media LLC., 5(3), 222-230.
https://doi.org/10.1038/s41560-020-0576-y
Chung DY, Lopes P, Farinazzo Bergamo Dias Martins P, He H, Kawaguchi T, Zapol P, You H, Tripković D, Strmcnik D, Zhu Y, Seifert S, Lee S, Stamenković V, Marković NM. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy. 2020;5(3):222-230.
doi:10.1038/s41560-020-0576-y .
Chung, Dong Young, Lopes, Pietro, Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripković, Dušan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenković, Vojislav, Marković, Nenad M., "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction" in Nature Energy, 5, no. 3 (2020):222-230,
https://doi.org/10.1038/s41560-020-0576-y . .
62
565
175
506

Eliminating dissolution of platinum-based electrocatalysts at the atomic scale

Lopes, Pietro; Li, Dongguo; Lv, Haifeng; Wang, Chao; Tripković, Dušan; Zhu, Yisi; Schimmenti, Roberto; Daimon, Hideo; Kang, Yijin; Snyder, Joshua; Becknell, Nigel; More, Karren; Strmcnik, Dusan; Marković, Nenad M.; Mavrikakis, Manos; Stamenković, Vojislav

(Nature Publishing Group, 2020)

TY  - JOUR
AU  - Lopes, Pietro
AU  - Li, Dongguo
AU  - Lv, Haifeng
AU  - Wang, Chao
AU  - Tripković, Dušan
AU  - Zhu, Yisi
AU  - Schimmenti, Roberto
AU  - Daimon, Hideo
AU  - Kang, Yijin
AU  - Snyder, Joshua
AU  - Becknell, Nigel
AU  - More, Karren
AU  - Strmcnik, Dusan
AU  - Marković, Nenad M.
AU  - Mavrikakis, Manos
AU  - Stamenković, Vojislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3699
AB  - A remaining challenge for deployment of proton-exchange membrane fuel cells is thelimited durability of Pt-nanoscale materials that operate at high voltages during thecathodic oxygen reduction reaction. In this work, atomic-scale insight into well-definedsingle crystalline, thin-film, and nanoscale surfaces exposed Pt dissolution trends thatgoverned the design and synthesis of durable materials. A newly defined metric, intrinsicdissolution, is essential to understanding the correlation between the measured Pt loss,surface structure, size and ratio of Pt-nanoparticles in carbon support. It was found that utilization of Au underlayer promotes ordering of Pt surface atoms towards (111)- structure, while Au on the surface selectively protects low-coordinated Pt sites. Thismitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles, resulting inelimination of Pt dissolution in liquid electrolyte, including 30-fold durability improvementvs. 3 nm Pt/C over extended potential range up to 1.2 V.
PB  - Nature Publishing Group
T2  - Nature Materials
T1  - Eliminating dissolution of platinum-based electrocatalysts at the atomic scale
VL  - 19
SP  - 1207
EP  - 1214
DO  - 10.1038/s41563-020-0735-3
ER  - 
@article{
author = "Lopes, Pietro and Li, Dongguo and Lv, Haifeng and Wang, Chao and Tripković, Dušan and Zhu, Yisi and Schimmenti, Roberto and Daimon, Hideo and Kang, Yijin and Snyder, Joshua and Becknell, Nigel and More, Karren and Strmcnik, Dusan and Marković, Nenad M. and Mavrikakis, Manos and Stamenković, Vojislav",
year = "2020",
abstract = "A remaining challenge for deployment of proton-exchange membrane fuel cells is thelimited durability of Pt-nanoscale materials that operate at high voltages during thecathodic oxygen reduction reaction. In this work, atomic-scale insight into well-definedsingle crystalline, thin-film, and nanoscale surfaces exposed Pt dissolution trends thatgoverned the design and synthesis of durable materials. A newly defined metric, intrinsicdissolution, is essential to understanding the correlation between the measured Pt loss,surface structure, size and ratio of Pt-nanoparticles in carbon support. It was found that utilization of Au underlayer promotes ordering of Pt surface atoms towards (111)- structure, while Au on the surface selectively protects low-coordinated Pt sites. Thismitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles, resulting inelimination of Pt dissolution in liquid electrolyte, including 30-fold durability improvementvs. 3 nm Pt/C over extended potential range up to 1.2 V.",
publisher = "Nature Publishing Group",
journal = "Nature Materials",
title = "Eliminating dissolution of platinum-based electrocatalysts at the atomic scale",
volume = "19",
pages = "1207-1214",
doi = "10.1038/s41563-020-0735-3"
}
Lopes, P., Li, D., Lv, H., Wang, C., Tripković, D., Zhu, Y., Schimmenti, R., Daimon, H., Kang, Y., Snyder, J., Becknell, N., More, K., Strmcnik, D., Marković, N. M., Mavrikakis, M.,& Stamenković, V.. (2020). Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. in Nature Materials
Nature Publishing Group., 19, 1207-1214.
https://doi.org/10.1038/s41563-020-0735-3
Lopes P, Li D, Lv H, Wang C, Tripković D, Zhu Y, Schimmenti R, Daimon H, Kang Y, Snyder J, Becknell N, More K, Strmcnik D, Marković NM, Mavrikakis M, Stamenković V. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. in Nature Materials. 2020;19:1207-1214.
doi:10.1038/s41563-020-0735-3 .
Lopes, Pietro, Li, Dongguo, Lv, Haifeng, Wang, Chao, Tripković, Dušan, Zhu, Yisi, Schimmenti, Roberto, Daimon, Hideo, Kang, Yijin, Snyder, Joshua, Becknell, Nigel, More, Karren, Strmcnik, Dusan, Marković, Nenad M., Mavrikakis, Manos, Stamenković, Vojislav, "Eliminating dissolution of platinum-based electrocatalysts at the atomic scale" in Nature Materials, 19 (2020):1207-1214,
https://doi.org/10.1038/s41563-020-0735-3 . .
78
137
45
123