Kovac, J

Link to this page

Authority KeyName Variants
8bf91748-4ea0-44b3-a3ab-e1594c8e195f
  • Kovac, J (2)
  • Kovac, J. (1)
Projects

Author's Bibliography

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jovic, B M; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovac, J; Radovic, M; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jovic, B M
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovac, J
AU  - Radovic, M
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2012
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
VL  - 766
SP  - 78
EP  - 86
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jovic, B M and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovac, J and Radovic, M and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
volume = "766",
pages = "78-86",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jovic, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovac, J., Radovic, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jovic BM, Jović VD, Lačnjevac U, Stevanović S, Kovac J, Radovic M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jovic, B M, Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovac, J, Radovic, M, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19

Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

Jovic, B M; Jović, Vladimir D.; Lačnjevac, Uroš; Stevanović, Sanja; Kovac, J; Radovic, M; Krstajić, Nedeljko V.

(Elsevier, 2016)

TY  - JOUR
AU  - Jovic, B M
AU  - Jović, Vladimir D.
AU  - Lačnjevac, Uroš
AU  - Stevanović, Sanja
AU  - Kovac, J
AU  - Radovic, M
AU  - Krstajić, Nedeljko V.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4297
AB  - In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
VL  - 766
SP  - 78
EP  - 86
DO  - 10.1016/j.jelechem.2016.01.038
ER  - 
@article{
author = "Jovic, B M and Jović, Vladimir D. and Lačnjevac, Uroš and Stevanović, Sanja and Kovac, J and Radovic, M and Krstajić, Nedeljko V.",
year = "2016",
abstract = "In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions",
volume = "766",
pages = "78-86",
doi = "10.1016/j.jelechem.2016.01.038"
}
Jovic, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovac, J., Radovic, M.,& Krstajić, N. V.. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry
Elsevier., 766, 78-86.
https://doi.org/10.1016/j.jelechem.2016.01.038
Jovic BM, Jović VD, Lačnjevac U, Stevanović S, Kovac J, Radovic M, Krstajić NV. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. in Journal of Electroanalytical Chemistry. 2016;766:78-86.
doi:10.1016/j.jelechem.2016.01.038 .
Jovic, B M, Jović, Vladimir D., Lačnjevac, Uroš, Stevanović, Sanja, Kovac, J, Radovic, M, Krstajić, Nedeljko V., "Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions" in Journal of Electroanalytical Chemistry, 766 (2016):78-86,
https://doi.org/10.1016/j.jelechem.2016.01.038 . .
18
14
19

Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt

Štrbac, Svetlana; Petrovic, S.; Vasilic, R.; Kovac, J.; Zalar, A.; Rakocevic, Z.

(Elsevier, 2007)

TY  - JOUR
AU  - Štrbac, Svetlana
AU  - Petrovic, S.
AU  - Vasilic, R.
AU  - Kovac, J.
AU  - Zalar, A.
AU  - Rakocevic, Z.
PY  - 2007
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3190
AB  - Platinum is deposited spontaneously on Au(1 1 1) surface from 1 mM H2PtCl6 + 1 M HClO4 solution using multiple deposition procedure. X-ray photoelectron spectroscopy (XPS) analysis has shown that after immersion into the Pt containing solution and rinsing with water, Pt(OH)2 resides on the Au(1 1 1) substrate. Consecutive depositions as well as in situ scanning tunneling microscopy (STM) and electrochemical measurements are performed on previously electrochemically reduced Pt/Au(1 1 1) surfaces. Only homogeneous distribution of thus deposited Pt islands is observed by in situ STM. With subsequent depositions, the width of deposited Pt islands increases, but stays lower than 10 nm, while a significant increase of Pt islands height is observed, leading to moderate increase of the coverage. Cyclic voltammetry (CV) profiles of obtained Pt/Au(1 1 1) surfaces, and CO stripping curves are recorded in 0.5 M H2SO4 solution. CO oxidation takes place only at higher potentials shifting negatively with increasing coverage. This is discussed with respect to Pt islands width and height distributions and to the influence of the Au(1 1 1) substrate surface.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt
VL  - 53
IS  - 2
SP  - 998
EP  - 1005
DO  - 10.1016/j.electacta.2007.08.019
ER  - 
@article{
author = "Štrbac, Svetlana and Petrovic, S. and Vasilic, R. and Kovac, J. and Zalar, A. and Rakocevic, Z.",
year = "2007",
abstract = "Platinum is deposited spontaneously on Au(1 1 1) surface from 1 mM H2PtCl6 + 1 M HClO4 solution using multiple deposition procedure. X-ray photoelectron spectroscopy (XPS) analysis has shown that after immersion into the Pt containing solution and rinsing with water, Pt(OH)2 resides on the Au(1 1 1) substrate. Consecutive depositions as well as in situ scanning tunneling microscopy (STM) and electrochemical measurements are performed on previously electrochemically reduced Pt/Au(1 1 1) surfaces. Only homogeneous distribution of thus deposited Pt islands is observed by in situ STM. With subsequent depositions, the width of deposited Pt islands increases, but stays lower than 10 nm, while a significant increase of Pt islands height is observed, leading to moderate increase of the coverage. Cyclic voltammetry (CV) profiles of obtained Pt/Au(1 1 1) surfaces, and CO stripping curves are recorded in 0.5 M H2SO4 solution. CO oxidation takes place only at higher potentials shifting negatively with increasing coverage. This is discussed with respect to Pt islands width and height distributions and to the influence of the Au(1 1 1) substrate surface.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt",
volume = "53",
number = "2",
pages = "998-1005",
doi = "10.1016/j.electacta.2007.08.019"
}
Štrbac, S., Petrovic, S., Vasilic, R., Kovac, J., Zalar, A.,& Rakocevic, Z.. (2007). Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. in Electrochimica Acta
Elsevier., 53(2), 998-1005.
https://doi.org/10.1016/j.electacta.2007.08.019
Štrbac S, Petrovic S, Vasilic R, Kovac J, Zalar A, Rakocevic Z. Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. in Electrochimica Acta. 2007;53(2):998-1005.
doi:10.1016/j.electacta.2007.08.019 .
Štrbac, Svetlana, Petrovic, S., Vasilic, R., Kovac, J., Zalar, A., Rakocevic, Z., "Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt" in Electrochimica Acta, 53, no. 2 (2007):998-1005,
https://doi.org/10.1016/j.electacta.2007.08.019 . .
60
47
55