Knutson, Daniel

Link to this page

Authority KeyName Variants
orcid::0000-0002-8043-767X
  • Knutson, Daniel (3)
  • Knutson, Daniel E. (1)
Projects

Author's Bibliography

Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3

Mitrović, Jelena; Petković, Miloš; Randjelović, Danijela; Đoković, Jelena; Knutson, Daniel; Cook, James; Savić, Vladimir; Savić, Miroslav; Savić, Snežana

(2022)

TY  - CONF
AU  - Mitrović, Jelena
AU  - Petković, Miloš
AU  - Randjelović, Danijela
AU  - Đoković, Jelena
AU  - Knutson, Daniel
AU  - Cook, James
AU  - Savić, Vladimir
AU  - Savić, Miroslav
AU  - Savić, Snežana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5259
AB  - Poster presented at 13th World meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, 28-31 March 2022, Rotterdam, Netherlands
T1  - Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3
UR  - https://hdl.handle.net/21.15107/rcub_cer_5259
ER  - 
@conference{
author = "Mitrović, Jelena and Petković, Miloš and Randjelović, Danijela and Đoković, Jelena and Knutson, Daniel and Cook, James and Savić, Vladimir and Savić, Miroslav and Savić, Snežana",
year = "2022",
abstract = "Poster presented at 13th World meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, 28-31 March 2022, Rotterdam, Netherlands",
title = "Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3",
url = "https://hdl.handle.net/21.15107/rcub_cer_5259"
}
Mitrović, J., Petković, M., Randjelović, D., Đoković, J., Knutson, D., Cook, J., Savić, V., Savić, M.,& Savić, S.. (2022). Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3. .
https://hdl.handle.net/21.15107/rcub_cer_5259
Mitrović J, Petković M, Randjelović D, Đoković J, Knutson D, Cook J, Savić V, Savić M, Savić S. Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3. 2022;.
https://hdl.handle.net/21.15107/rcub_cer_5259 .
Mitrović, Jelena, Petković, Miloš, Randjelović, Danijela, Đoković, Jelena, Knutson, Daniel, Cook, James, Savić, Vladimir, Savić, Miroslav, Savić, Snežana, "Physicochemical/structural investigation of lipid nanoparticles with high lecithin amounts loaded with patent protected pyrazoloquinolinone ligand DK-I-60-3" (2022),
https://hdl.handle.net/21.15107/rcub_cer_5259 .

Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach

Mitrović, Jelena; Divović-Matović, Branka; Knutson, Daniel E.; Ðoković, Jelena B.; Kremenović, Aleksandar; Dobričić, Vladimir; Randjelović, Danijela; Pantelić, Ivana; Cook, James; Savić, Miroslav M.; Savić, Snežana D.

(MDPI, 2021)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Divović-Matović, Branka
AU  - Knutson, Daniel E.
AU  - Ðoković, Jelena B.
AU  - Kremenović, Aleksandar
AU  - Dobričić, Vladimir
AU  - Randjelović, Danijela
AU  - Pantelić, Ivana
AU  - Cook, James
AU  - Savić, Miroslav M.
AU  - Savić, Snežana D.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4791
AB  - Poor water solubility of new chemical entities is considered as one of the main obstacles in drug development, as it usually leads to low bioavailability after administration. To overcome these problems, the selection of the appropriate formulation technology needs to be based on the physicochemical properties of the drug and introduced in the early stages of drug research. One example of the new potential drug substance with poor solubility is DK-I-60-3, deuterated pyrazoloquinolinone, designed for the treatment of various neuropsychiatric disorders. In this research, based on preformulation studies, nanocrystal technology was chosen to improve the oral bioavailability of DK-I-60-3. Nanocrystal dispersions stabilized by sodium lauryl sulfate and polyvinylpyrrolidone were prepared by modified wet media milling technique, with the selection of appropriate process and formulation parameters. The nanoparticles characterization included particle size and zeta potential measurements, differential scanning calorimetry, X-ray powder diffraction, dissolution and solubility study, and in vivo pharmacokinetic experiments. Developed formulations had small uniform particle sizes and were stable for three months. Nanonization caused decreased crystallite size and induced crystal defects formation, as well as a DK-I-60-3 solubility increase. Furthermore, after oral administration of the developed formulations in rats, two to three-fold bioavailability enhancement was observed in plasma and investigated organs, including the brain.
PB  - MDPI
T2  - Pharmaceutics
T1  - Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach
VL  - 13
IS  - 8
SP  - 1188
DO  - 10.3390/pharmaceutics13081188
ER  - 
@article{
author = "Mitrović, Jelena and Divović-Matović, Branka and Knutson, Daniel E. and Ðoković, Jelena B. and Kremenović, Aleksandar and Dobričić, Vladimir and Randjelović, Danijela and Pantelić, Ivana and Cook, James and Savić, Miroslav M. and Savić, Snežana D.",
year = "2021",
abstract = "Poor water solubility of new chemical entities is considered as one of the main obstacles in drug development, as it usually leads to low bioavailability after administration. To overcome these problems, the selection of the appropriate formulation technology needs to be based on the physicochemical properties of the drug and introduced in the early stages of drug research. One example of the new potential drug substance with poor solubility is DK-I-60-3, deuterated pyrazoloquinolinone, designed for the treatment of various neuropsychiatric disorders. In this research, based on preformulation studies, nanocrystal technology was chosen to improve the oral bioavailability of DK-I-60-3. Nanocrystal dispersions stabilized by sodium lauryl sulfate and polyvinylpyrrolidone were prepared by modified wet media milling technique, with the selection of appropriate process and formulation parameters. The nanoparticles characterization included particle size and zeta potential measurements, differential scanning calorimetry, X-ray powder diffraction, dissolution and solubility study, and in vivo pharmacokinetic experiments. Developed formulations had small uniform particle sizes and were stable for three months. Nanonization caused decreased crystallite size and induced crystal defects formation, as well as a DK-I-60-3 solubility increase. Furthermore, after oral administration of the developed formulations in rats, two to three-fold bioavailability enhancement was observed in plasma and investigated organs, including the brain.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach",
volume = "13",
number = "8",
pages = "1188",
doi = "10.3390/pharmaceutics13081188"
}
Mitrović, J., Divović-Matović, B., Knutson, D. E., Ðoković, J. B., Kremenović, A., Dobričić, V., Randjelović, D., Pantelić, I., Cook, J., Savić, M. M.,& Savić, S. D.. (2021). Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach. in Pharmaceutics
MDPI., 13(8), 1188.
https://doi.org/10.3390/pharmaceutics13081188
Mitrović J, Divović-Matović B, Knutson DE, Ðoković JB, Kremenović A, Dobričić V, Randjelović D, Pantelić I, Cook J, Savić MM, Savić SD. Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach. in Pharmaceutics. 2021;13(8):1188.
doi:10.3390/pharmaceutics13081188 .
Mitrović, Jelena, Divović-Matović, Branka, Knutson, Daniel E., Ðoković, Jelena B., Kremenović, Aleksandar, Dobričić, Vladimir, Randjelović, Danijela, Pantelić, Ivana, Cook, James, Savić, Miroslav M., Savić, Snežana D., "Overcoming the low oral bioavailability of deuterated pyrazoloquinolinone ligand dk-i-60-3 by nanonization: A knowledge-based approach" in Pharmaceutics, 13, no. 8 (2021):1188,
https://doi.org/10.3390/pharmaceutics13081188 . .
7
8

Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance

Mitrović, Jelena; Divović, Branka; Knutson, Daniel; Đoković, Jelena; Vulić, Predrag; Randjelović, Danijela; Dobričić, Vladimir; Čalija, Bojan; Cook, James; Savić, Miroslav M.; Savić, Snežana

(Elsevier, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Divović, Branka
AU  - Knutson, Daniel
AU  - Đoković, Jelena
AU  - Vulić, Predrag
AU  - Randjelović, Danijela
AU  - Dobričić, Vladimir
AU  - Čalija, Bojan
AU  - Cook, James
AU  - Savić, Miroslav M.
AU  - Savić, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3714
AB  - DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Science
T1  - Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance
VL  - 152
SP  - 105432
DO  - 10.1016/j.ejps.2020.105432
ER  - 
@article{
author = "Mitrović, Jelena and Divović, Branka and Knutson, Daniel and Đoković, Jelena and Vulić, Predrag and Randjelović, Danijela and Dobričić, Vladimir and Čalija, Bojan and Cook, James and Savić, Miroslav M. and Savić, Snežana",
year = "2020",
abstract = "DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Science",
title = "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance",
volume = "152",
pages = "105432",
doi = "10.1016/j.ejps.2020.105432"
}
Mitrović, J., Divović, B., Knutson, D., Đoković, J., Vulić, P., Randjelović, D., Dobričić, V., Čalija, B., Cook, J., Savić, M. M.,& Savić, S.. (2020). Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science
Elsevier., 152, 105432.
https://doi.org/10.1016/j.ejps.2020.105432
Mitrović J, Divović B, Knutson D, Đoković J, Vulić P, Randjelović D, Dobričić V, Čalija B, Cook J, Savić MM, Savić S. Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science. 2020;152:105432.
doi:10.1016/j.ejps.2020.105432 .
Mitrović, Jelena, Divović, Branka, Knutson, Daniel, Đoković, Jelena, Vulić, Predrag, Randjelović, Danijela, Dobričić, Vladimir, Čalija, Bojan, Cook, James, Savić, Miroslav M., Savić, Snežana, "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance" in European Journal of Pharmaceutical Science, 152 (2020):105432,
https://doi.org/10.1016/j.ejps.2020.105432 . .
7
3
7

Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance

Mitrović, Jelena; Divović, Branka; Knutson, Daniel; Đoković, Jelena; Vulić, Predrag; Randjelović, Danijela; Dobričić, Vladimir; Čalija, Bojan; Cook, James; Savić, Miroslav M.; Savić, Snežana

(Elsevier, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Divović, Branka
AU  - Knutson, Daniel
AU  - Đoković, Jelena
AU  - Vulić, Predrag
AU  - Randjelović, Danijela
AU  - Dobričić, Vladimir
AU  - Čalija, Bojan
AU  - Cook, James
AU  - Savić, Miroslav M.
AU  - Savić, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3635
AB  - DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Science
T1  - Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance
VL  - 152
SP  - 105432
DO  - 10.1016/j.ejps.2020.105432
ER  - 
@article{
author = "Mitrović, Jelena and Divović, Branka and Knutson, Daniel and Đoković, Jelena and Vulić, Predrag and Randjelović, Danijela and Dobričić, Vladimir and Čalija, Bojan and Cook, James and Savić, Miroslav M. and Savić, Snežana",
year = "2020",
abstract = "DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Science",
title = "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance",
volume = "152",
pages = "105432",
doi = "10.1016/j.ejps.2020.105432"
}
Mitrović, J., Divović, B., Knutson, D., Đoković, J., Vulić, P., Randjelović, D., Dobričić, V., Čalija, B., Cook, J., Savić, M. M.,& Savić, S.. (2020). Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science
Elsevier., 152, 105432.
https://doi.org/10.1016/j.ejps.2020.105432
Mitrović J, Divović B, Knutson D, Đoković J, Vulić P, Randjelović D, Dobričić V, Čalija B, Cook J, Savić MM, Savić S. Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science. 2020;152:105432.
doi:10.1016/j.ejps.2020.105432 .
Mitrović, Jelena, Divović, Branka, Knutson, Daniel, Đoković, Jelena, Vulić, Predrag, Randjelović, Danijela, Dobričić, Vladimir, Čalija, Bojan, Cook, James, Savić, Miroslav M., Savić, Snežana, "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance" in European Journal of Pharmaceutical Science, 152 (2020):105432,
https://doi.org/10.1016/j.ejps.2020.105432 . .
7
3
7