Srdić, Vladimir V.

Link to this page

Authority KeyName Variants
c22fe831-bc1e-450d-8a65-e1c1e5c319c8
  • Srdić, Vladimir V. (1)
Projects

Author's Bibliography

Rapid detection of olive oil blends using a paper-based portable microfluidic platform

Radovanović, Milan; Ilić, Marko; Pastor, Kristian A.; Ačanski, Marijana M.; Panić, Sanja; Srdić, Vladimir V.; Randjelović, Danijela; Kojić, Tijana; Stojanović, Goran

(Elsevier, 2021)

TY  - JOUR
AU  - Radovanović, Milan
AU  - Ilić, Marko
AU  - Pastor, Kristian A.
AU  - Ačanski, Marijana M.
AU  - Panić, Sanja
AU  - Srdić, Vladimir V.
AU  - Randjelović, Danijela
AU  - Kojić, Tijana
AU  - Stojanović, Goran
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4236
AB  - This paper presents an application of a portable microfluidic platform based on a filter paper on which multi-walled carbon nanotubes were deposited to quickly determine the quality of olive oil by measuring electrical resistance. Three different types of filter paper with different pore sizes and different filtration rates were used in the middle of the microfluidic platform, as a material for soaking a blend of olive and high-oleic sunflower oil. The rapid prototyping xurographic technique was used to fabricate the complete microfluidic platform. For testing purposes, oil blends in various proportions were deposited through the inlet on the top of the platform. The variation in electrical resistance at room temperature was measured, using the Chemical Impedance Analyzer, successfully indicating oil proportions in measured blends. We obtained the change of resistance in the range from 0.26 MΩ to 2.79 MΩ per percentage of olive oil content, for corresponding linearity index from 0.71 to 0.99, for papers labelled with 44–45, respectively. Additionally, a prototype of electronic device was developed for acquisition and displaying measured data, based on the created microfluidic platform.
PB  - Elsevier
T2  - Food Control
T1  - Rapid detection of olive oil blends using a paper-based portable microfluidic platform
VL  - 124
SP  - 107888
DO  - 10.1016/j.foodcont.2021.107888
ER  - 
@article{
author = "Radovanović, Milan and Ilić, Marko and Pastor, Kristian A. and Ačanski, Marijana M. and Panić, Sanja and Srdić, Vladimir V. and Randjelović, Danijela and Kojić, Tijana and Stojanović, Goran",
year = "2021",
abstract = "This paper presents an application of a portable microfluidic platform based on a filter paper on which multi-walled carbon nanotubes were deposited to quickly determine the quality of olive oil by measuring electrical resistance. Three different types of filter paper with different pore sizes and different filtration rates were used in the middle of the microfluidic platform, as a material for soaking a blend of olive and high-oleic sunflower oil. The rapid prototyping xurographic technique was used to fabricate the complete microfluidic platform. For testing purposes, oil blends in various proportions were deposited through the inlet on the top of the platform. The variation in electrical resistance at room temperature was measured, using the Chemical Impedance Analyzer, successfully indicating oil proportions in measured blends. We obtained the change of resistance in the range from 0.26 MΩ to 2.79 MΩ per percentage of olive oil content, for corresponding linearity index from 0.71 to 0.99, for papers labelled with 44–45, respectively. Additionally, a prototype of electronic device was developed for acquisition and displaying measured data, based on the created microfluidic platform.",
publisher = "Elsevier",
journal = "Food Control",
title = "Rapid detection of olive oil blends using a paper-based portable microfluidic platform",
volume = "124",
pages = "107888",
doi = "10.1016/j.foodcont.2021.107888"
}
Radovanović, M., Ilić, M., Pastor, K. A., Ačanski, M. M., Panić, S., Srdić, V. V., Randjelović, D., Kojić, T.,& Stojanović, G.. (2021). Rapid detection of olive oil blends using a paper-based portable microfluidic platform. in Food Control
Elsevier., 124, 107888.
https://doi.org/10.1016/j.foodcont.2021.107888
Radovanović M, Ilić M, Pastor KA, Ačanski MM, Panić S, Srdić VV, Randjelović D, Kojić T, Stojanović G. Rapid detection of olive oil blends using a paper-based portable microfluidic platform. in Food Control. 2021;124:107888.
doi:10.1016/j.foodcont.2021.107888 .
Radovanović, Milan, Ilić, Marko, Pastor, Kristian A., Ačanski, Marijana M., Panić, Sanja, Srdić, Vladimir V., Randjelović, Danijela, Kojić, Tijana, Stojanović, Goran, "Rapid detection of olive oil blends using a paper-based portable microfluidic platform" in Food Control, 124 (2021):107888,
https://doi.org/10.1016/j.foodcont.2021.107888 . .
5
5