Linke, Patrick

Link to this page

Authority KeyName Variants
1f0f4718-ecfd-477f-83f8-05229a5c9782
  • Linke, Patrick (4)
Projects

Author's Bibliography

Targeting heat recovery and reuse in industrial zone

Zarić, Milana; Stijepović, Mirko Z.; Linke, Patrick; Stajić-Trošić, Jasna; Bugarski, Branko; Kijevčanin, Mirjana

(Association of the Chemical Engineers of Serbia, 2017)

TY  - JOUR
AU  - Zarić, Milana
AU  - Stijepović, Mirko Z.
AU  - Linke, Patrick
AU  - Stajić-Trošić, Jasna
AU  - Bugarski, Branko
AU  - Kijevčanin, Mirjana
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2235
AB  - In order to reduce the usage of fossil fuels in industrial sectors by meeting the requirements of production processes, new heat integration and heat recovery approaches are developed. The goal of this study is to develop an approach to increase energy efficiency of an industrial zone by recovering and reusing waste heat via indirect heat integration. Industrial zones usually consist of multiple independent plants, where each plant is supplied by an independent utility system, as a decentralized system. In this study, a new approach is developed to target minimum energy requirements where an industrial zone would be supplied by a centralized utility system instead of decentralized utility system. The approach assumes that all process plants in an industrial zone are linked through the central utility system. This method is formulated as a linear programming problem (LP). Moreover, the proposed method may be used for decision making related to energy integration strategy of an industrial zone. In addition, the proposed method was applied on a case study. The results revealed that saving of fossil fuel could be achieved.
PB  - Association of the Chemical Engineers of Serbia
T2  - Chemical Industry and Chemical Engineering Quarterly / CICEQ
T1  - Targeting heat recovery and reuse in industrial zone
VL  - 23
IS  - 1
SP  - 73
EP  - 82
DO  - 10.2298/CICEQ150622009Z
ER  - 
@article{
author = "Zarić, Milana and Stijepović, Mirko Z. and Linke, Patrick and Stajić-Trošić, Jasna and Bugarski, Branko and Kijevčanin, Mirjana",
year = "2017",
abstract = "In order to reduce the usage of fossil fuels in industrial sectors by meeting the requirements of production processes, new heat integration and heat recovery approaches are developed. The goal of this study is to develop an approach to increase energy efficiency of an industrial zone by recovering and reusing waste heat via indirect heat integration. Industrial zones usually consist of multiple independent plants, where each plant is supplied by an independent utility system, as a decentralized system. In this study, a new approach is developed to target minimum energy requirements where an industrial zone would be supplied by a centralized utility system instead of decentralized utility system. The approach assumes that all process plants in an industrial zone are linked through the central utility system. This method is formulated as a linear programming problem (LP). Moreover, the proposed method may be used for decision making related to energy integration strategy of an industrial zone. In addition, the proposed method was applied on a case study. The results revealed that saving of fossil fuel could be achieved.",
publisher = "Association of the Chemical Engineers of Serbia",
journal = "Chemical Industry and Chemical Engineering Quarterly / CICEQ",
title = "Targeting heat recovery and reuse in industrial zone",
volume = "23",
number = "1",
pages = "73-82",
doi = "10.2298/CICEQ150622009Z"
}
Zarić, M., Stijepović, M. Z., Linke, P., Stajić-Trošić, J., Bugarski, B.,& Kijevčanin, M.. (2017). Targeting heat recovery and reuse in industrial zone. in Chemical Industry and Chemical Engineering Quarterly / CICEQ
Association of the Chemical Engineers of Serbia., 23(1), 73-82.
https://doi.org/10.2298/CICEQ150622009Z
Zarić M, Stijepović MZ, Linke P, Stajić-Trošić J, Bugarski B, Kijevčanin M. Targeting heat recovery and reuse in industrial zone. in Chemical Industry and Chemical Engineering Quarterly / CICEQ. 2017;23(1):73-82.
doi:10.2298/CICEQ150622009Z .
Zarić, Milana, Stijepović, Mirko Z., Linke, Patrick, Stajić-Trošić, Jasna, Bugarski, Branko, Kijevčanin, Mirjana, "Targeting heat recovery and reuse in industrial zone" in Chemical Industry and Chemical Engineering Quarterly / CICEQ, 23, no. 1 (2017):73-82,
https://doi.org/10.2298/CICEQ150622009Z . .
4
2
3

Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection

Stijcpovic, Mirko Z.; Papadopoulos, Athanasios I.; Linke, Patrick; Stijepović, Vladimir; Grujić, Aleksandar; Kijevčanin, Mirjana; Seferlis, Panos

(Elsevier, 2017)

TY  - CONF
AU  - Stijcpovic, Mirko Z.
AU  - Papadopoulos, Athanasios I.
AU  - Linke, Patrick
AU  - Stijepović, Vladimir
AU  - Grujić, Aleksandar
AU  - Kijevčanin, Mirjana
AU  - Seferlis, Panos
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2119
AB  - We propose a systematic model for the optimum design of Organic Rankine Cycles (ORC) used for power generation from multiple heat sources available at different temperatures. The model enables the automated generation of inclusive and flexible ORC cascades and is optimized using a global optimization algorithm. Design parameters include the number of ORC cascades, the shared structure of the heat exchanger network, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. Results indicate significant operating improvements from using a double ORC cascade with different working fluids.
PB  - Elsevier
C3  - 27th European Symposium on Computer Aided Process Engineering, Pt A
T1  - Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection
SP  - 769
EP  - 774
DO  - 10.1016/B978-0-444-63965-3.50130-6
ER  - 
@conference{
author = "Stijcpovic, Mirko Z. and Papadopoulos, Athanasios I. and Linke, Patrick and Stijepović, Vladimir and Grujić, Aleksandar and Kijevčanin, Mirjana and Seferlis, Panos",
year = "2017",
abstract = "We propose a systematic model for the optimum design of Organic Rankine Cycles (ORC) used for power generation from multiple heat sources available at different temperatures. The model enables the automated generation of inclusive and flexible ORC cascades and is optimized using a global optimization algorithm. Design parameters include the number of ORC cascades, the shared structure of the heat exchanger network, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. Results indicate significant operating improvements from using a double ORC cascade with different working fluids.",
publisher = "Elsevier",
journal = "27th European Symposium on Computer Aided Process Engineering, Pt A",
title = "Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection",
pages = "769-774",
doi = "10.1016/B978-0-444-63965-3.50130-6"
}
Stijcpovic, M. Z., Papadopoulos, A. I., Linke, P., Stijepović, V., Grujić, A., Kijevčanin, M.,& Seferlis, P.. (2017). Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection. in 27th European Symposium on Computer Aided Process Engineering, Pt A
Elsevier., 769-774.
https://doi.org/10.1016/B978-0-444-63965-3.50130-6
Stijcpovic MZ, Papadopoulos AI, Linke P, Stijepović V, Grujić A, Kijevčanin M, Seferlis P. Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection. in 27th European Symposium on Computer Aided Process Engineering, Pt A. 2017;:769-774.
doi:10.1016/B978-0-444-63965-3.50130-6 .
Stijcpovic, Mirko Z., Papadopoulos, Athanasios I., Linke, Patrick, Stijepović, Vladimir, Grujić, Aleksandar, Kijevčanin, Mirjana, Seferlis, Panos, "Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection" in 27th European Symposium on Computer Aided Process Engineering, Pt A (2017):769-774,
https://doi.org/10.1016/B978-0-444-63965-3.50130-6 . .
1
1
1

Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection

Stijepović, Mirko Z.; Papadopoulos, Athanasios I.; Linke, Patrick; Stijepović, Vladimir; Grujić, Aleksandar; Kijevčanin, Mirjana; Seferlis, Panos

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Stijepović, Mirko Z.
AU  - Papadopoulos, Athanasios I.
AU  - Linke, Patrick
AU  - Stijepović, Vladimir
AU  - Grujić, Aleksandar
AU  - Kijevčanin, Mirjana
AU  - Seferlis, Panos
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2229
AB  - This work presents a systematic approach toward the design of Organic Rankine Cycles (ORC) for the generation of power from multiple heat sources available at different temperature levels. The design problem is approached in a mixed-integer non-linear programming (MINLP) formulation where an inclusive and flexible ORC model is automatically evolved by a deterministic algorithm for global optimization. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a condensation and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. The approach is illustrated through a case study which indicates that a system of two waste heat sources is best exploited through two interconnected ORC utilizing different working fluids.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of Cleaner Production
T1  - Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection
VL  - 142
SP  - 1950
EP  - 1970
DO  - 10.1016/j.jclepro.2016.11.088
ER  - 
@article{
author = "Stijepović, Mirko Z. and Papadopoulos, Athanasios I. and Linke, Patrick and Stijepović, Vladimir and Grujić, Aleksandar and Kijevčanin, Mirjana and Seferlis, Panos",
year = "2017",
abstract = "This work presents a systematic approach toward the design of Organic Rankine Cycles (ORC) for the generation of power from multiple heat sources available at different temperature levels. The design problem is approached in a mixed-integer non-linear programming (MINLP) formulation where an inclusive and flexible ORC model is automatically evolved by a deterministic algorithm for global optimization. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a condensation and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. The approach is illustrated through a case study which indicates that a system of two waste heat sources is best exploited through two interconnected ORC utilizing different working fluids.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of Cleaner Production",
title = "Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection",
volume = "142",
pages = "1950-1970",
doi = "10.1016/j.jclepro.2016.11.088"
}
Stijepović, M. Z., Papadopoulos, A. I., Linke, P., Stijepović, V., Grujić, A., Kijevčanin, M.,& Seferlis, P.. (2017). Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection. in Journal of Cleaner Production
Elsevier Sci Ltd, Oxford., 142, 1950-1970.
https://doi.org/10.1016/j.jclepro.2016.11.088
Stijepović MZ, Papadopoulos AI, Linke P, Stijepović V, Grujić A, Kijevčanin M, Seferlis P. Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection. in Journal of Cleaner Production. 2017;142:1950-1970.
doi:10.1016/j.jclepro.2016.11.088 .
Stijepović, Mirko Z., Papadopoulos, Athanasios I., Linke, Patrick, Stijepović, Vladimir, Grujić, Aleksandar, Kijevčanin, Mirjana, Seferlis, Panos, "Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection" in Journal of Cleaner Production, 142 (2017):1950-1970,
https://doi.org/10.1016/j.jclepro.2016.11.088 . .
38
22
35

Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection

Stijepović, Mirko Z.; Papadopoulos, Athanasios I.; Linke, Patrick; Stijepović, Vladimir; Grujić, Aleksandar; Kijevčanin, Mirjana; Seferlis, Panos

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Stijepović, Mirko Z.
AU  - Papadopoulos, Athanasios I.
AU  - Linke, Patrick
AU  - Stijepović, Vladimir
AU  - Grujić, Aleksandar
AU  - Kijevčanin, Mirjana
AU  - Seferlis, Panos
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3032
AB  - This work presents a systematic approach toward the design of Organic Rankine Cycles (ORC) for the generation of power from multiple heat sources available at different temperature levels. The design problem is approached in a mixed-integer non-linear programming (MINLP) formulation where an inclusive and flexible ORC model is automatically evolved by a deterministic algorithm for global optimization. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a condensation and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. The approach is illustrated through a case study which indicates that a system of two waste heat sources is best exploited through two interconnected ORC utilizing different working fluids.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of Cleaner Production
T1  - Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection
VL  - 142
SP  - 1950
EP  - 1970
DO  - 10.1016/j.jclepro.2016.11.088
ER  - 
@article{
author = "Stijepović, Mirko Z. and Papadopoulos, Athanasios I. and Linke, Patrick and Stijepović, Vladimir and Grujić, Aleksandar and Kijevčanin, Mirjana and Seferlis, Panos",
year = "2017",
abstract = "This work presents a systematic approach toward the design of Organic Rankine Cycles (ORC) for the generation of power from multiple heat sources available at different temperature levels. The design problem is approached in a mixed-integer non-linear programming (MINLP) formulation where an inclusive and flexible ORC model is automatically evolved by a deterministic algorithm for global optimization. The basic building block of the model is the ORC cascade which consists of a heat extraction, a power generation, a condensation and a liquid pressurization section. The aim of the optimization is to determine the optimum number of ORC cascades, the structure of the heat exchanger network shared among different cascades, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. The approach is illustrated through a case study which indicates that a system of two waste heat sources is best exploited through two interconnected ORC utilizing different working fluids.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of Cleaner Production",
title = "Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection",
volume = "142",
pages = "1950-1970",
doi = "10.1016/j.jclepro.2016.11.088"
}
Stijepović, M. Z., Papadopoulos, A. I., Linke, P., Stijepović, V., Grujić, A., Kijevčanin, M.,& Seferlis, P.. (2017). Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection. in Journal of Cleaner Production
Elsevier Sci Ltd, Oxford., 142, 1950-1970.
https://doi.org/10.1016/j.jclepro.2016.11.088
Stijepović MZ, Papadopoulos AI, Linke P, Stijepović V, Grujić A, Kijevčanin M, Seferlis P. Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection. in Journal of Cleaner Production. 2017;142:1950-1970.
doi:10.1016/j.jclepro.2016.11.088 .
Stijepović, Mirko Z., Papadopoulos, Athanasios I., Linke, Patrick, Stijepović, Vladimir, Grujić, Aleksandar, Kijevčanin, Mirjana, Seferlis, Panos, "Organic Rankine Cycle system performance targeting and design for multiple heat sources with simultaneous working fluid selection" in Journal of Cleaner Production, 142 (2017):1950-1970,
https://doi.org/10.1016/j.jclepro.2016.11.088 . .
38
22
36