Rajić, Vladimir

Link to this page

Authority KeyName Variants
orcid::0000-0001-7053-572X
  • Rajić, Vladimir (3)
Projects

Author's Bibliography

Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions

Stamenković, Tijana; Pjević, Dejan; Krstić, Jugoslav; Popović, Maja; Rajić, Vladimir; Lojpur, Vesna

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Stamenković, Tijana
AU  - Pjević, Dejan
AU  - Krstić, Jugoslav
AU  - Popović, Maja
AU  - Rajić, Vladimir
AU  - Lojpur, Vesna
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5881
AB  - A set of samples of SrGd2O4 doped with Sm3+ and Dy3+with different concentrations was prepared via glycine-assisted combustion synthesis. All of the diffraction peaks are related to the pure orthorhombic lattice SrGd2O4, according to X-ray Powder Diffraction investigation. The Energy Dispersive X-ray Spectroscopy chemical characterization revealed that the structure included all desired elements. Field Emission Scanning Electron Microscopy was used to capture the morphology, which showed porous aggregated particles consisting of roughly 50 nm-sized spherical particles. The Mercury Intrusion Porosimetry was used to establish where voids originated, and the results showed that samples have a real permanent 3D pore structure. X-ray Photoelectron Spectroscopy verified the successful incorporation of Dy3+ and Sm3+ ions in the matrix. Down-conversion luminescence spectra were recorded and typical emission transitions were found for either Sm3+ (4G5/2→6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2) or Dy3+ (4F9/2→6H15/2 and 4F9/2→6H13/2) ions. Calculation of the energy band gap using UV-VIS Diffuse Reflectance Spectroscopy yielded values of 4.3 eV for both doped samples. Using UV-VIS Absorption Spectroscopy, the photocatalytic degradation process was observed. After 4 h of simulating Sun exposure, an analysis of the photocatalytic properties revealed that approximately 50% of the Rhodamine B had been mineralized.
PB  - Elsevier B.V.
T2  - Surfaces and Interfaces
T1  - Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions
VL  - 37
SP  - 102755
DO  - 10.1016/j.surfin.2023.102755
ER  - 
@article{
author = "Stamenković, Tijana and Pjević, Dejan and Krstić, Jugoslav and Popović, Maja and Rajić, Vladimir and Lojpur, Vesna",
year = "2023",
abstract = "A set of samples of SrGd2O4 doped with Sm3+ and Dy3+with different concentrations was prepared via glycine-assisted combustion synthesis. All of the diffraction peaks are related to the pure orthorhombic lattice SrGd2O4, according to X-ray Powder Diffraction investigation. The Energy Dispersive X-ray Spectroscopy chemical characterization revealed that the structure included all desired elements. Field Emission Scanning Electron Microscopy was used to capture the morphology, which showed porous aggregated particles consisting of roughly 50 nm-sized spherical particles. The Mercury Intrusion Porosimetry was used to establish where voids originated, and the results showed that samples have a real permanent 3D pore structure. X-ray Photoelectron Spectroscopy verified the successful incorporation of Dy3+ and Sm3+ ions in the matrix. Down-conversion luminescence spectra were recorded and typical emission transitions were found for either Sm3+ (4G5/2→6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2) or Dy3+ (4F9/2→6H15/2 and 4F9/2→6H13/2) ions. Calculation of the energy band gap using UV-VIS Diffuse Reflectance Spectroscopy yielded values of 4.3 eV for both doped samples. Using UV-VIS Absorption Spectroscopy, the photocatalytic degradation process was observed. After 4 h of simulating Sun exposure, an analysis of the photocatalytic properties revealed that approximately 50% of the Rhodamine B had been mineralized.",
publisher = "Elsevier B.V.",
journal = "Surfaces and Interfaces",
title = "Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions",
volume = "37",
pages = "102755",
doi = "10.1016/j.surfin.2023.102755"
}
Stamenković, T., Pjević, D., Krstić, J., Popović, M., Rajić, V.,& Lojpur, V.. (2023). Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions. in Surfaces and Interfaces
Elsevier B.V.., 37, 102755.
https://doi.org/10.1016/j.surfin.2023.102755
Stamenković T, Pjević D, Krstić J, Popović M, Rajić V, Lojpur V. Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions. in Surfaces and Interfaces. 2023;37:102755.
doi:10.1016/j.surfin.2023.102755 .
Stamenković, Tijana, Pjević, Dejan, Krstić, Jugoslav, Popović, Maja, Rajić, Vladimir, Lojpur, Vesna, "Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions" in Surfaces and Interfaces, 37 (2023):102755,
https://doi.org/10.1016/j.surfin.2023.102755 . .
6
5

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

Vićentić, Teodora; Andrić, Stevan; Rajić, Vladimir; Spasenović, Marko

(Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, 2022)

TY  - JOUR
AU  - Vićentić, Teodora
AU  - Andrić, Stevan
AU  - Rajić, Vladimir
AU  - Spasenović, Marko
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5473
AB  - Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir–Blodgett assembly. Employing centrifugation speeds of 3, 4, and 5 krpm, further diluting the solutions in different volumes of solvent, we reliably and consistently obtained films of tunable thickness. We show that there is a limit to how thin these films can be, which is imposed by the percolation threshold. The percolation threshold is quantitatively compared to results found in literature that are obtained using other, more complex graphene film fabrication methods, and is found to occur with a percolation exponent and percolative figure of merit that are of the same order as results in literature. A maximum optical transparency of 82.4% at a wavelength of 660 nm is obtained for these films, which is in agreement with earlier works on Langmuir–Blodgett assembled ultrasonic-assisted liquid-phase exfoliated graphene. Our work demonstrates that films that are in all respects on par with films of graphene obtained through other solution-based processes can be produced from inexpensive and widely available centrifugal post-processing of existing commercially available solutions of electrochemically exfoliated graphene. The demonstrated methodology will lower the entry barriers for new research and industrial uses, since it allows researchers with no exfoliation experience to make use of widely available graphene materials.
PB  - Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften
T2  - Beilstein Journal of Nanotechnology
T1  - Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene
VL  - 13
SP  - 666
EP  - 674
DO  - 10.3762/bjnano.13.58
ER  - 
@article{
author = "Vićentić, Teodora and Andrić, Stevan and Rajić, Vladimir and Spasenović, Marko",
year = "2022",
abstract = "Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir–Blodgett assembly. Employing centrifugation speeds of 3, 4, and 5 krpm, further diluting the solutions in different volumes of solvent, we reliably and consistently obtained films of tunable thickness. We show that there is a limit to how thin these films can be, which is imposed by the percolation threshold. The percolation threshold is quantitatively compared to results found in literature that are obtained using other, more complex graphene film fabrication methods, and is found to occur with a percolation exponent and percolative figure of merit that are of the same order as results in literature. A maximum optical transparency of 82.4% at a wavelength of 660 nm is obtained for these films, which is in agreement with earlier works on Langmuir–Blodgett assembled ultrasonic-assisted liquid-phase exfoliated graphene. Our work demonstrates that films that are in all respects on par with films of graphene obtained through other solution-based processes can be produced from inexpensive and widely available centrifugal post-processing of existing commercially available solutions of electrochemically exfoliated graphene. The demonstrated methodology will lower the entry barriers for new research and industrial uses, since it allows researchers with no exfoliation experience to make use of widely available graphene materials.",
publisher = "Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften",
journal = "Beilstein Journal of Nanotechnology",
title = "Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene",
volume = "13",
pages = "666-674",
doi = "10.3762/bjnano.13.58"
}
Vićentić, T., Andrić, S., Rajić, V.,& Spasenović, M.. (2022). Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene. in Beilstein Journal of Nanotechnology
Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften., 13, 666-674.
https://doi.org/10.3762/bjnano.13.58
Vićentić T, Andrić S, Rajić V, Spasenović M. Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene. in Beilstein Journal of Nanotechnology. 2022;13:666-674.
doi:10.3762/bjnano.13.58 .
Vićentić, Teodora, Andrić, Stevan, Rajić, Vladimir, Spasenović, Marko, "Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene" in Beilstein Journal of Nanotechnology, 13 (2022):666-674,
https://doi.org/10.3762/bjnano.13.58 . .
3

PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution

Rakočević, Lazar; Stojković Simatović, Ivana; Maksić, Aleksandar; Rajić, Vladimir; Štrbac, Svetlana; Srejić, Irina

(2022)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Stojković Simatović, Ivana
AU  - Maksić, Aleksandar
AU  - Rajić, Vladimir
AU  - Štrbac, Svetlana
AU  - Srejić, Irina
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5292
AB  - PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown
remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution.
SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform
in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of
graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were
0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO
was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial
potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This
was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement
performed for 40 min for hydrogen evolution at a constant potential indicated good stability and
durability of the PtAu/rGO electrode.
T2  - Catalysis
T1  - PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution
VL  - 12
IS  - 43
SP  - 2
EP  - 13
DO  - 10.3390/catal12010043
ER  - 
@article{
author = "Rakočević, Lazar and Stojković Simatović, Ivana and Maksić, Aleksandar and Rajić, Vladimir and Štrbac, Svetlana and Srejić, Irina",
year = "2022",
abstract = "PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown
remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution.
SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform
in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of
graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were
0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO
was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial
potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This
was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement
performed for 40 min for hydrogen evolution at a constant potential indicated good stability and
durability of the PtAu/rGO electrode.",
journal = "Catalysis",
title = "PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution",
volume = "12",
number = "43",
pages = "2-13",
doi = "10.3390/catal12010043"
}
Rakočević, L., Stojković Simatović, I., Maksić, A., Rajić, V., Štrbac, S.,& Srejić, I.. (2022). PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution. in Catalysis, 12(43), 2-13.
https://doi.org/10.3390/catal12010043
Rakočević L, Stojković Simatović I, Maksić A, Rajić V, Štrbac S, Srejić I. PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution. in Catalysis. 2022;12(43):2-13.
doi:10.3390/catal12010043 .
Rakočević, Lazar, Stojković Simatović, Ivana, Maksić, Aleksandar, Rajić, Vladimir, Štrbac, Svetlana, Srejić, Irina, "PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution" in Catalysis, 12, no. 43 (2022):2-13,
https://doi.org/10.3390/catal12010043 . .
7
14
15