Zdujić, Miodrag

Link to this page

Authority KeyName Variants
orcid::0000-0002-1963-6506
  • Zdujić, Miodrag (10)
Projects

Author's Bibliography

Valorization of walnut shell ash as a catalyst for biodiesel production

Miladinović, Marija R.; Zdujić, Miodrag; Veljović, Đorđe; Krstić, Jugoslav; Banković-Ilić, Ivana B.; Veljković, Vlada B.; Stamenković, Olivera

(Elsevier, 2020)

TY  - JOUR
AU  - Miladinović, Marija R.
AU  - Zdujić, Miodrag
AU  - Veljović, Đorđe
AU  - Krstić, Jugoslav
AU  - Banković-Ilić, Ivana B.
AU  - Veljković, Vlada B.
AU  - Stamenković, Olivera
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3217
AB  - The catalytic activity of the walnut shell ash was investigated in the biodiesel production by the sunflower oil methanolysis. The catalyst was characterized by the TG-DTA, XRD, Hg porosimetry, N2 physisorption, SEM, and Hammett method. In addition, the effects of the catalyst loading and the methanol-to-oil molar ratio on the methyl esters synthesis were tested at the reaction temperature of 60 °C. The walnut shell ash provided a very fast reaction and a high FAME content (over 98%). As the reaction occurred in the absence of triacylglycerols mass transfer limitation, the pseudo-first-order model was employed for describing the kinetics of the reaction. The catalyst was successfully reused four times after the regeneration of the catalytic activity by recalcination at 800 °C.
PB  - Elsevier
T2  - Renewable Energy
T1  - Valorization of walnut shell ash as a catalyst for biodiesel production
VL  - 147
SP  - 1033
EP  - 1043
DO  - 10.1016/j.renene.2019.09.056
ER  - 
@article{
author = "Miladinović, Marija R. and Zdujić, Miodrag and Veljović, Đorđe and Krstić, Jugoslav and Banković-Ilić, Ivana B. and Veljković, Vlada B. and Stamenković, Olivera",
year = "2020",
abstract = "The catalytic activity of the walnut shell ash was investigated in the biodiesel production by the sunflower oil methanolysis. The catalyst was characterized by the TG-DTA, XRD, Hg porosimetry, N2 physisorption, SEM, and Hammett method. In addition, the effects of the catalyst loading and the methanol-to-oil molar ratio on the methyl esters synthesis were tested at the reaction temperature of 60 °C. The walnut shell ash provided a very fast reaction and a high FAME content (over 98%). As the reaction occurred in the absence of triacylglycerols mass transfer limitation, the pseudo-first-order model was employed for describing the kinetics of the reaction. The catalyst was successfully reused four times after the regeneration of the catalytic activity by recalcination at 800 °C.",
publisher = "Elsevier",
journal = "Renewable Energy",
title = "Valorization of walnut shell ash as a catalyst for biodiesel production",
volume = "147",
pages = "1033-1043",
doi = "10.1016/j.renene.2019.09.056"
}
Miladinović, M. R., Zdujić, M., Veljović, Đ., Krstić, J., Banković-Ilić, I. B., Veljković, V. B.,& Stamenković, O.. (2020). Valorization of walnut shell ash as a catalyst for biodiesel production. in Renewable Energy
Elsevier., 147, 1033-1043.
https://doi.org/10.1016/j.renene.2019.09.056
Miladinović MR, Zdujić M, Veljović Đ, Krstić J, Banković-Ilić IB, Veljković VB, Stamenković O. Valorization of walnut shell ash as a catalyst for biodiesel production. in Renewable Energy. 2020;147:1033-1043.
doi:10.1016/j.renene.2019.09.056 .
Miladinović, Marija R., Zdujić, Miodrag, Veljović, Đorđe, Krstić, Jugoslav, Banković-Ilić, Ivana B., Veljković, Vlada B., Stamenković, Olivera, "Valorization of walnut shell ash as a catalyst for biodiesel production" in Renewable Energy, 147 (2020):1033-1043,
https://doi.org/10.1016/j.renene.2019.09.056 . .
89
31
92

Valorization of walnut shell ash as a catalyst for biodiesel production

Miladinović, Marija R.; Zdujić, Miodrag; Veljović, Đorđe; Krstić, Jugoslav; Banković-Ilić, Ivana B.; Veljković, Vlada B.; Stamenković, Olivera

(Elsevier, 2020)

TY  - JOUR
AU  - Miladinović, Marija R.
AU  - Zdujić, Miodrag
AU  - Veljović, Đorđe
AU  - Krstić, Jugoslav
AU  - Banković-Ilić, Ivana B.
AU  - Veljković, Vlada B.
AU  - Stamenković, Olivera
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/6903
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3319
AB  - The catalytic activity of the walnut shell ash was investigated in the biodiesel production by the sunflower oil methanolysis. The catalyst was characterized by the TG-DTA, XRD, Hg porosimetry, N2 physisorption, SEM, and Hammett method. In addition, the effects of the catalyst loading and the methanol-to-oil molar ratio on the methyl esters synthesis were tested at the reaction temperature of 60 °C. The walnut shell ash provided a very fast reaction and a high FAME content (over 98%). As the reaction occurred in the absence of triacylglycerols mass transfer limitation, the pseudo-first-order model was employed for describing the kinetics of the reaction. The catalyst was successfully reused four times after the regeneration of the catalytic activity by recalcination at 800 °C.
PB  - Elsevier
T2  - Renewable Energy
T1  - Valorization of walnut shell ash as a catalyst for biodiesel production
VL  - 147
SP  - 1033
EP  - 1043
DO  - 10.1016/j.renene.2019.09.056
ER  - 
@article{
author = "Miladinović, Marija R. and Zdujić, Miodrag and Veljović, Đorđe and Krstić, Jugoslav and Banković-Ilić, Ivana B. and Veljković, Vlada B. and Stamenković, Olivera",
year = "2020",
abstract = "The catalytic activity of the walnut shell ash was investigated in the biodiesel production by the sunflower oil methanolysis. The catalyst was characterized by the TG-DTA, XRD, Hg porosimetry, N2 physisorption, SEM, and Hammett method. In addition, the effects of the catalyst loading and the methanol-to-oil molar ratio on the methyl esters synthesis were tested at the reaction temperature of 60 °C. The walnut shell ash provided a very fast reaction and a high FAME content (over 98%). As the reaction occurred in the absence of triacylglycerols mass transfer limitation, the pseudo-first-order model was employed for describing the kinetics of the reaction. The catalyst was successfully reused four times after the regeneration of the catalytic activity by recalcination at 800 °C.",
publisher = "Elsevier",
journal = "Renewable Energy",
title = "Valorization of walnut shell ash as a catalyst for biodiesel production",
volume = "147",
pages = "1033-1043",
doi = "10.1016/j.renene.2019.09.056"
}
Miladinović, M. R., Zdujić, M., Veljović, Đ., Krstić, J., Banković-Ilić, I. B., Veljković, V. B.,& Stamenković, O.. (2020). Valorization of walnut shell ash as a catalyst for biodiesel production. in Renewable Energy
Elsevier., 147, 1033-1043.
https://doi.org/10.1016/j.renene.2019.09.056
Miladinović MR, Zdujić M, Veljović Đ, Krstić J, Banković-Ilić IB, Veljković VB, Stamenković O. Valorization of walnut shell ash as a catalyst for biodiesel production. in Renewable Energy. 2020;147:1033-1043.
doi:10.1016/j.renene.2019.09.056 .
Miladinović, Marija R., Zdujić, Miodrag, Veljović, Đorđe, Krstić, Jugoslav, Banković-Ilić, Ivana B., Veljković, Vlada B., Stamenković, Olivera, "Valorization of walnut shell ash as a catalyst for biodiesel production" in Renewable Energy, 147 (2020):1033-1043,
https://doi.org/10.1016/j.renene.2019.09.056 . .
88
31
94

Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil

Kesić, Željka; Lukić, Ivana; Zdujić, Miodrag; Jovalekić, Čedomir; Liu, Hui; Skala, Dejan

(Belgrade: Association of the Chemical Engineers of Serbia, 2015)

TY  - JOUR
AU  - Kesić, Željka
AU  - Lukić, Ivana
AU  - Zdujić, Miodrag
AU  - Jovalekić, Čedomir
AU  - Liu, Hui
AU  - Skala, Dejan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/3542
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2606
AB  - The goal of this study was to prepare a CaO·ZnO catalyst containing a small amount of K2CO3 and analyze its activity for biodiesel synthesis. The catalyst was prepared using the following procedure: CaO and ZnO (mole ratio of 1:2), water and K2CO3 (in various amounts) were mechanochemically treated and after milling heated at 700 °C in air atmosphere for obtaining mixed CaO·ZnO/xK2CO3 oxides (x = 0, 1, 2 and 4 mol of K2CO3 per 10 mol of CaO). All the samples were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), particle size laser diffraction (PSLD) distribution, solubility measurement of Ca, Zn and K ions in methanol as well as by determination of their alkalinity (Hammett Indicator method). Prepared CaO·ZnO/xK2CO3 composite powders were tested as catalysts for methanolysis of sunflower oil at 70 °C using mole ratio of sunflower oil to methanol of 1:10 and with 2 mass% of catalyst based on oil weight. The presence of K2CO3 in prepared samples was found to increase the activity of catalyst, and that such effect is caused by homogeneous-heterogeneous catalysis of biodiesel synthesis. © 2015, CI and CEQ. All Rights Reserved.
PB  - Belgrade: Association of the Chemical Engineers of Serbia
T2  - Chemical Industry and Chemical Engineering Quarterly
T1  - Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil
VL  - 21
IS  - 1
SP  - 1
EP  - 12
DO  - 10.2298/CICEQ131026041K
ER  - 
@article{
author = "Kesić, Željka and Lukić, Ivana and Zdujić, Miodrag and Jovalekić, Čedomir and Liu, Hui and Skala, Dejan",
year = "2015",
abstract = "The goal of this study was to prepare a CaO·ZnO catalyst containing a small amount of K2CO3 and analyze its activity for biodiesel synthesis. The catalyst was prepared using the following procedure: CaO and ZnO (mole ratio of 1:2), water and K2CO3 (in various amounts) were mechanochemically treated and after milling heated at 700 °C in air atmosphere for obtaining mixed CaO·ZnO/xK2CO3 oxides (x = 0, 1, 2 and 4 mol of K2CO3 per 10 mol of CaO). All the samples were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), particle size laser diffraction (PSLD) distribution, solubility measurement of Ca, Zn and K ions in methanol as well as by determination of their alkalinity (Hammett Indicator method). Prepared CaO·ZnO/xK2CO3 composite powders were tested as catalysts for methanolysis of sunflower oil at 70 °C using mole ratio of sunflower oil to methanol of 1:10 and with 2 mass% of catalyst based on oil weight. The presence of K2CO3 in prepared samples was found to increase the activity of catalyst, and that such effect is caused by homogeneous-heterogeneous catalysis of biodiesel synthesis. © 2015, CI and CEQ. All Rights Reserved.",
publisher = "Belgrade: Association of the Chemical Engineers of Serbia",
journal = "Chemical Industry and Chemical Engineering Quarterly",
title = "Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil",
volume = "21",
number = "1",
pages = "1-12",
doi = "10.2298/CICEQ131026041K"
}
Kesić, Ž., Lukić, I., Zdujić, M., Jovalekić, Č., Liu, H.,& Skala, D.. (2015). Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil. in Chemical Industry and Chemical Engineering Quarterly
Belgrade: Association of the Chemical Engineers of Serbia., 21(1), 1-12.
https://doi.org/10.2298/CICEQ131026041K
Kesić Ž, Lukić I, Zdujić M, Jovalekić Č, Liu H, Skala D. Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil. in Chemical Industry and Chemical Engineering Quarterly. 2015;21(1):1-12.
doi:10.2298/CICEQ131026041K .
Kesić, Željka, Lukić, Ivana, Zdujić, Miodrag, Jovalekić, Čedomir, Liu, Hui, Skala, Dejan, "Mechanochemical synthesis of CaO·ZnO·K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil" in Chemical Industry and Chemical Engineering Quarterly, 21, no. 1 (2015):1-12,
https://doi.org/10.2298/CICEQ131026041K . .
6
6
8

Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO

Lukić, Ivana; Kesic, Zeljka; Maksimović, Svetolik; Zdujić, Miodrag; Liu, Hui; Krstić, Jugoslav; Skala, Dejan

(Elsevier Sci Ltd, Oxford, 2013)

TY  - JOUR
AU  - Lukić, Ivana
AU  - Kesic, Zeljka
AU  - Maksimović, Svetolik
AU  - Zdujić, Miodrag
AU  - Liu, Hui
AU  - Krstić, Jugoslav
AU  - Skala, Dejan
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1180
AB  - The kinetics of heterogeneous methanolysis of sunflower oil and used vegetable oil were studied at different temperatures, ranging from 60 to 96 degrees C using CaO center dot ZnO as catalyst (2 wt% on the basis of oil) and methanol to oil molar ratio of 10:1. Heterogeneous CaO center dot ZnO catalyst was synthesized by mechanochemical treatment of CaO and ZnO powder mixture with the addition of water necessary for the formation of corresponding mixed hydroxides, and their calcination at 700 degrees C in air. It was shown that kinetics of overall process could be described as pseudo-first order reaction. For the sunflower oil methanolysis at 60 and 70 degrees C, the rate of process at the beginning of biodiesel synthesis was limited by triglycerides mass transfer to the catalyst surface, and after that it is governed by the rate of chemical reaction at catalyst surface. At higher temperatures the influence of mass transfer resistance is almost negligible implying that the rate of chemical reaction determines the overall kinetic of biodiesel synthesis. In the case of used vegetable oil, the influence of mass transfer resistance was not observed either at higher or lower temperature. The kinetic model that describes the whole process well was proposed, and it comprises both the triglycerides mass transfer and chemical reaction controlled regime. The overall volumetric mass transfer coefficient was defined, assuming that it depends on the conversion of triglycerides.
PB  - Elsevier Sci Ltd, Oxford
T2  - Fuel
T1  - Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO
VL  - 113
SP  - 367
EP  - 378
DO  - 10.1016/j.fuel.2013.05.093
ER  - 
@article{
author = "Lukić, Ivana and Kesic, Zeljka and Maksimović, Svetolik and Zdujić, Miodrag and Liu, Hui and Krstić, Jugoslav and Skala, Dejan",
year = "2013",
abstract = "The kinetics of heterogeneous methanolysis of sunflower oil and used vegetable oil were studied at different temperatures, ranging from 60 to 96 degrees C using CaO center dot ZnO as catalyst (2 wt% on the basis of oil) and methanol to oil molar ratio of 10:1. Heterogeneous CaO center dot ZnO catalyst was synthesized by mechanochemical treatment of CaO and ZnO powder mixture with the addition of water necessary for the formation of corresponding mixed hydroxides, and their calcination at 700 degrees C in air. It was shown that kinetics of overall process could be described as pseudo-first order reaction. For the sunflower oil methanolysis at 60 and 70 degrees C, the rate of process at the beginning of biodiesel synthesis was limited by triglycerides mass transfer to the catalyst surface, and after that it is governed by the rate of chemical reaction at catalyst surface. At higher temperatures the influence of mass transfer resistance is almost negligible implying that the rate of chemical reaction determines the overall kinetic of biodiesel synthesis. In the case of used vegetable oil, the influence of mass transfer resistance was not observed either at higher or lower temperature. The kinetic model that describes the whole process well was proposed, and it comprises both the triglycerides mass transfer and chemical reaction controlled regime. The overall volumetric mass transfer coefficient was defined, assuming that it depends on the conversion of triglycerides.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Fuel",
title = "Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO",
volume = "113",
pages = "367-378",
doi = "10.1016/j.fuel.2013.05.093"
}
Lukić, I., Kesic, Z., Maksimović, S., Zdujić, M., Liu, H., Krstić, J.,& Skala, D.. (2013). Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO. in Fuel
Elsevier Sci Ltd, Oxford., 113, 367-378.
https://doi.org/10.1016/j.fuel.2013.05.093
Lukić I, Kesic Z, Maksimović S, Zdujić M, Liu H, Krstić J, Skala D. Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO. in Fuel. 2013;113:367-378.
doi:10.1016/j.fuel.2013.05.093 .
Lukić, Ivana, Kesic, Zeljka, Maksimović, Svetolik, Zdujić, Miodrag, Liu, Hui, Krstić, Jugoslav, Skala, Dejan, "Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO center dot ZnO" in Fuel, 113 (2013):367-378,
https://doi.org/10.1016/j.fuel.2013.05.093 . .
73
71
81

Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst

Kesić, Željka; Lukić, Ivana; Zdujić, Miodrag; Jovalekić, Čedomir; Shao, Yong; Liu, Hui; Skala, Dejan

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Kesić, Željka
AU  - Lukić, Ivana
AU  - Zdujić, Miodrag
AU  - Jovalekić, Čedomir
AU  - Shao, Yong
AU  - Liu, Hui
AU  - Skala, Dejan
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/423
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2842
AB  - The mixed oxide of CaO·ZnO and K2CO3 were prepared by ball milling of CaO and ZnO powders and water, with addition of K2CO3 and afterward by calcination at 700 oC. Influence of different molar ratio of K2CO3 and CaO (x=1, 2 and 4 moles of K2CO3 per 10 moles of CaO) was studied . The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanningelectron microscopy/energy-dispersive spectroscopy (SEM/EDS) and the particle size laser diffraction (PSLD) distribution. The addition of smaller amount of K2CO3 at the beginning of ball miling (x≤2), favors the formation of calcium zinc hydroxide hydrate, while it is not the case when K2CO3 larger addition was used (x > 2). A larger amount of potassium carbonate in the initialcomposition of powder mixture negatively affected formation of CaZn2(OH)6·2H2O. Bimodal distribution were detected for all samples after calcination at 700 oC and the results showed that the distribution of elements in the bulk is not homogeneous and that surface of formed mixed oxide CaO.ZnO (XPS analysis) after calcination is mainly covered by potassium species. That evidence indicate that the K2CO3 was not fully incorporated into the matrix. Prepared samples could be used for methanolysis of vegetable oil and fatty acid methyl esters (FAME, i.e. biodiesel) synthesis.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst
SP  - 46
EP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_423
ER  - 
@conference{
author = "Kesić, Željka and Lukić, Ivana and Zdujić, Miodrag and Jovalekić, Čedomir and Shao, Yong and Liu, Hui and Skala, Dejan",
year = "2013",
abstract = "The mixed oxide of CaO·ZnO and K2CO3 were prepared by ball milling of CaO and ZnO powders and water, with addition of K2CO3 and afterward by calcination at 700 oC. Influence of different molar ratio of K2CO3 and CaO (x=1, 2 and 4 moles of K2CO3 per 10 moles of CaO) was studied . The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanningelectron microscopy/energy-dispersive spectroscopy (SEM/EDS) and the particle size laser diffraction (PSLD) distribution. The addition of smaller amount of K2CO3 at the beginning of ball miling (x≤2), favors the formation of calcium zinc hydroxide hydrate, while it is not the case when K2CO3 larger addition was used (x > 2). A larger amount of potassium carbonate in the initialcomposition of powder mixture negatively affected formation of CaZn2(OH)6·2H2O. Bimodal distribution were detected for all samples after calcination at 700 oC and the results showed that the distribution of elements in the bulk is not homogeneous and that surface of formed mixed oxide CaO.ZnO (XPS analysis) after calcination is mainly covered by potassium species. That evidence indicate that the K2CO3 was not fully incorporated into the matrix. Prepared samples could be used for methanolysis of vegetable oil and fatty acid methyl esters (FAME, i.e. biodiesel) synthesis.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst",
pages = "46-46",
url = "https://hdl.handle.net/21.15107/rcub_dais_423"
}
Kesić, Ž., Lukić, I., Zdujić, M., Jovalekić, Č., Shao, Y., Liu, H.,& Skala, D.. (2013). Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 46-46.
https://hdl.handle.net/21.15107/rcub_dais_423
Kesić Ž, Lukić I, Zdujić M, Jovalekić Č, Shao Y, Liu H, Skala D. Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:46-46.
https://hdl.handle.net/21.15107/rcub_dais_423 .
Kesić, Željka, Lukić, Ivana, Zdujić, Miodrag, Jovalekić, Čedomir, Shao, Yong, Liu, Hui, Skala, Dejan, "Biodiesel synthesis based on CaO·ZnO.K2CO3 as catalyst" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):46-46,
https://hdl.handle.net/21.15107/rcub_dais_423 .

Characterization of mechanochemically synthesized CaO·ZnO.K2CO3

Kesić, Željka; Lukić, Ivana; Zdujić, Miodrag; Jovalekić, Čedomir; Shao, Yong; Liu, Hui; Skala, Dejan

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Kesić, Željka
AU  - Lukić, Ivana
AU  - Zdujić, Miodrag
AU  - Jovalekić, Čedomir
AU  - Shao, Yong
AU  - Liu, Hui
AU  - Skala, Dejan
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/422
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2843
AB  - The mixed oxide of CaO·ZnO and K2CO3 were prepared by ball milling of CaO and ZnO powders and water, with addition of K2CO3 and afterward by calcination at 700 oC. Influence of different molar ratio of K2CO3 and CaO (x=1, 2 and 4 moles of K2CO3 per 10 moles of CaO) was studied . The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and the particle size laser diffraction (PSLD) distribution. The addition of smaller amount of K2CO3 at the beginning of ball miling (x≤2), favors the formation of calcium zinc hydroxide hydrate, while it is not the case when K2CO3 larger addition was used (x > 2). A larger amount of potassium carbonate in the initial composition of powder mixture negatively affected formation of CaZn2(OH)6·2H2O. Bimodal distribution were detected for all samples after calcination at 700 oC and the results showed that the distribution of elements in the bulk is not homogeneous and that surface of formed mixed oxide CaO.ZnO (XPS analysis) after calcination is mainly covered by potassium species. That evidence indicate that the K2CO3 was not fully incorporated into the matrix. Prepared samples could be used for methanolysis of vegetable oil and fatty acid methyl esters (FAME, i.e. biodiesel) synthesis.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Characterization of mechanochemically synthesized CaO·ZnO.K2CO3
SP  - 45
EP  - 45
UR  - https://hdl.handle.net/21.15107/rcub_dais_422
ER  - 
@conference{
author = "Kesić, Željka and Lukić, Ivana and Zdujić, Miodrag and Jovalekić, Čedomir and Shao, Yong and Liu, Hui and Skala, Dejan",
year = "2013",
abstract = "The mixed oxide of CaO·ZnO and K2CO3 were prepared by ball milling of CaO and ZnO powders and water, with addition of K2CO3 and afterward by calcination at 700 oC. Influence of different molar ratio of K2CO3 and CaO (x=1, 2 and 4 moles of K2CO3 per 10 moles of CaO) was studied . The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and the particle size laser diffraction (PSLD) distribution. The addition of smaller amount of K2CO3 at the beginning of ball miling (x≤2), favors the formation of calcium zinc hydroxide hydrate, while it is not the case when K2CO3 larger addition was used (x > 2). A larger amount of potassium carbonate in the initial composition of powder mixture negatively affected formation of CaZn2(OH)6·2H2O. Bimodal distribution were detected for all samples after calcination at 700 oC and the results showed that the distribution of elements in the bulk is not homogeneous and that surface of formed mixed oxide CaO.ZnO (XPS analysis) after calcination is mainly covered by potassium species. That evidence indicate that the K2CO3 was not fully incorporated into the matrix. Prepared samples could be used for methanolysis of vegetable oil and fatty acid methyl esters (FAME, i.e. biodiesel) synthesis.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Characterization of mechanochemically synthesized CaO·ZnO.K2CO3",
pages = "45-45",
url = "https://hdl.handle.net/21.15107/rcub_dais_422"
}
Kesić, Ž., Lukić, I., Zdujić, M., Jovalekić, Č., Shao, Y., Liu, H.,& Skala, D.. (2013). Characterization of mechanochemically synthesized CaO·ZnO.K2CO3. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 45-45.
https://hdl.handle.net/21.15107/rcub_dais_422
Kesić Ž, Lukić I, Zdujić M, Jovalekić Č, Shao Y, Liu H, Skala D. Characterization of mechanochemically synthesized CaO·ZnO.K2CO3. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:45-45.
https://hdl.handle.net/21.15107/rcub_dais_422 .
Kesić, Željka, Lukić, Ivana, Zdujić, Miodrag, Jovalekić, Čedomir, Shao, Yong, Liu, Hui, Skala, Dejan, "Characterization of mechanochemically synthesized CaO·ZnO.K2CO3" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):45-45,
https://hdl.handle.net/21.15107/rcub_dais_422 .

Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides

Kesić, Željka; Lukić, Ivana; Zdujić, Miodrag; Jovanović, Dušan M.; Liu, Hui; Skala, Dejan

(Belgrade : Serbian Ceramic Society, 2012)

TY  - CONF
AU  - Kesić, Željka
AU  - Lukić, Ivana
AU  - Zdujić, Miodrag
AU  - Jovanović, Dušan M.
AU  - Liu, Hui
AU  - Skala, Dejan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/505
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2844
AB  - Room temperature ball milling of CaO and ZnO powder mixture (using molar ratio of CaO:ZnO of 1:2) with the addition of stoichiometrically required amount of water to form calcium zinc hydroxide hydrate (CaZn2(OH)6•2H2O) and subsequent calcination at 700 oC was conducted. In order to improve basicity of mixed oxides, calcium zinc hydroxide hydrate was modified by the addition of promoters. The addition of promoter in initial powder mixture such as K2CO3 and KOH (with molar ratio of promoter to CaO of 1:10) was shown to effect the mechanochemical reaction. The prepared catalysts were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), base strength using Hammett indicator method and scanning electron microscopy (SEM and SEM-EDS). The results showed that, during mechanochemical treatment, CaO, ZnO and H2O reacted rapidly to form CaZn2(OH)6•2H2O, and this was the same when promoters were used. Only difference was in basicity of the catalysts, and opposite of the expected, results showed that the addition of promoters did not cause an increase of basicity. On the other hand, addition of KOH to initial powder mixture caused increase of carbonates formation during mechanochemical treatment.
PB  - Belgrade : Serbian Ceramic Society
C3  - The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
T1  - Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides
SP  - 28
EP  - 28
UR  - https://hdl.handle.net/21.15107/rcub_dais_505
ER  - 
@conference{
author = "Kesić, Željka and Lukić, Ivana and Zdujić, Miodrag and Jovanović, Dušan M. and Liu, Hui and Skala, Dejan",
year = "2012",
abstract = "Room temperature ball milling of CaO and ZnO powder mixture (using molar ratio of CaO:ZnO of 1:2) with the addition of stoichiometrically required amount of water to form calcium zinc hydroxide hydrate (CaZn2(OH)6•2H2O) and subsequent calcination at 700 oC was conducted. In order to improve basicity of mixed oxides, calcium zinc hydroxide hydrate was modified by the addition of promoters. The addition of promoter in initial powder mixture such as K2CO3 and KOH (with molar ratio of promoter to CaO of 1:10) was shown to effect the mechanochemical reaction. The prepared catalysts were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), base strength using Hammett indicator method and scanning electron microscopy (SEM and SEM-EDS). The results showed that, during mechanochemical treatment, CaO, ZnO and H2O reacted rapidly to form CaZn2(OH)6•2H2O, and this was the same when promoters were used. Only difference was in basicity of the catalysts, and opposite of the expected, results showed that the addition of promoters did not cause an increase of basicity. On the other hand, addition of KOH to initial powder mixture caused increase of carbonates formation during mechanochemical treatment.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts",
title = "Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides",
pages = "28-28",
url = "https://hdl.handle.net/21.15107/rcub_dais_505"
}
Kesić, Ž., Lukić, I., Zdujić, M., Jovanović, D. M., Liu, H.,& Skala, D.. (2012). Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society., 28-28.
https://hdl.handle.net/21.15107/rcub_dais_505
Kesić Ž, Lukić I, Zdujić M, Jovanović DM, Liu H, Skala D. Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts. 2012;:28-28.
https://hdl.handle.net/21.15107/rcub_dais_505 .
Kesić, Željka, Lukić, Ivana, Zdujić, Miodrag, Jovanović, Dušan M., Liu, Hui, Skala, Dejan, "Characterization of Mechanochemically Synthesized CaO·ZnO/K2O Mixed Oxides" in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts (2012):28-28,
https://hdl.handle.net/21.15107/rcub_dais_505 .

Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis

Lukić, Ivana; Kesić, Željka; Zdujić, Miodrag; Jovanović, Dušan M.; Liu, Hui; Skala, Dejan

(Belgrade : Serbian Ceramic Society, 2012)

TY  - CONF
AU  - Lukić, Ivana
AU  - Kesić, Željka
AU  - Zdujić, Miodrag
AU  - Jovanović, Dušan M.
AU  - Liu, Hui
AU  - Skala, Dejan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/513
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2852
AB  - One of the catalysts that show excellent activity in the methanolysis of vegetable oil under moderate reaction conditions is the mixture of CaO and ZnO oxides. In this study CaO•ZnO catalyst was synthesized by mechanochemical treatment of ZnO and Ca(OH)2 or CaO powder mixture (using molar ratio of CaO (or Ca(OH)2):ZnO of 1:2) with the addition of required water amount to form calcium zinc hydroxide hydrate (CaZn2(OH)6•2H2O) and subsequent calcinations at 700 °C in air atmosphere. The methanolysis of sunflower oil was studied at 60 °C with the molar ratio of methanol to oil of 10:1 and with 2 wt% of catalyst based on oil weight. Characterisation of the catalyst was performed by XRD, TGA/DSC, FTIR, the particle size distribution and Hammett indicator method. The solubility of the catalyst in methanol at 60 °C was also determined by measuring the calcium(II) and zinc(II) concentration. The results showed that whether Ca(OH)2 or CaO were used as a starting material, after calcination an active catalyst composed of CaO and ZnO was obtained. When CaO was used in the starting mixture, basicity was slightly higher, while the amount of present carbonates was lower.
PB  - Belgrade : Serbian Ceramic Society
C3  - The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
T1  - Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis
SP  - 18
EP  - 18
UR  - https://hdl.handle.net/21.15107/rcub_dais_513
ER  - 
@conference{
author = "Lukić, Ivana and Kesić, Željka and Zdujić, Miodrag and Jovanović, Dušan M. and Liu, Hui and Skala, Dejan",
year = "2012",
abstract = "One of the catalysts that show excellent activity in the methanolysis of vegetable oil under moderate reaction conditions is the mixture of CaO and ZnO oxides. In this study CaO•ZnO catalyst was synthesized by mechanochemical treatment of ZnO and Ca(OH)2 or CaO powder mixture (using molar ratio of CaO (or Ca(OH)2):ZnO of 1:2) with the addition of required water amount to form calcium zinc hydroxide hydrate (CaZn2(OH)6•2H2O) and subsequent calcinations at 700 °C in air atmosphere. The methanolysis of sunflower oil was studied at 60 °C with the molar ratio of methanol to oil of 10:1 and with 2 wt% of catalyst based on oil weight. Characterisation of the catalyst was performed by XRD, TGA/DSC, FTIR, the particle size distribution and Hammett indicator method. The solubility of the catalyst in methanol at 60 °C was also determined by measuring the calcium(II) and zinc(II) concentration. The results showed that whether Ca(OH)2 or CaO were used as a starting material, after calcination an active catalyst composed of CaO and ZnO was obtained. When CaO was used in the starting mixture, basicity was slightly higher, while the amount of present carbonates was lower.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts",
title = "Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis",
pages = "18-18",
url = "https://hdl.handle.net/21.15107/rcub_dais_513"
}
Lukić, I., Kesić, Ž., Zdujić, M., Jovanović, D. M., Liu, H.,& Skala, D.. (2012). Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society., 18-18.
https://hdl.handle.net/21.15107/rcub_dais_513
Lukić I, Kesić Ž, Zdujić M, Jovanović DM, Liu H, Skala D. Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts. 2012;:18-18.
https://hdl.handle.net/21.15107/rcub_dais_513 .
Lukić, Ivana, Kesić, Željka, Zdujić, Miodrag, Jovanović, Dušan M., Liu, Hui, Skala, Dejan, "Mechanochemical Preparation of CaO·ZnO – catalyst for Fatty Acids Methyl Esters Synthesis" in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts (2012):18-18,
https://hdl.handle.net/21.15107/rcub_dais_513 .

LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation

Petrović, Srđan; Terlecki-Baričević, Ana V.; Karanovic, Lj.; Kirilov-Stefanov, P.; Zdujić, Miodrag; Dondur, Vera; Paneva, Daniela; Mitov, I.; Rakić, Vesna M.

(Elsevier, 2008)

TY  - JOUR
AU  - Petrović, Srđan
AU  - Terlecki-Baričević, Ana V.
AU  - Karanovic, Lj.
AU  - Kirilov-Stefanov, P.
AU  - Zdujić, Miodrag
AU  - Dondur, Vera
AU  - Paneva, Daniela
AU  - Mitov, I.
AU  - Rakić, Vesna M.
PY  - 2008
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/399
AB  - Two new series of perovskite-type oxides LaMO3 (M = Mg, Ti, Fe) with different ratio Mg/Fe (MF) and Ti/Fe (TF) in the B cation site were prepared by annealing the precursor, obtained by the mechanochemical activation (MCA) of constituent metal oxides, at 1000 degrees C in air. In addition, two closely related perovskites LaFeO3 (LF) and LaTi0.5Mg0.5O3 (TM (50:50)) were synthesized in the similar way. Using MCA method, perovskites were obtained in rather short time and at room temperature. The samples were characterized by X-ray powder diffraction (XRPD), Xray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), temperature programmed desorption of oxygen (TPD), Mossbauer spectroscopy, BET surface area measurements and tested in methane deep oxidation. According to XRPD analysis all synthesized samples are almost single perovskite phase, with trace amounts of La2O3 phase. Data of Mossbauer spectroscopy identify Fe 31 in octahedral coordination. The activity of perovskite in methane deep oxidation increases in the order TM (50:50)  LT  MF series  LT  TF series. Higher activity of TF samples in respect to MF with similar Fe content can be related to the structural characteristic., mainly to the presence of predominantly most labile oxygen species evidenced by TPD at lowest temperature of oxygen evaluation. In used experimental conditions, the Fe substituted perovskite are thermal stable up to the temperature of 850 degrees C. The stability of Fe active sites is probably the most important parameter responsible for thermal stability of perovskite, but the atomic surface composition also should be taken into account.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation
VL  - 79
IS  - 2
SP  - 186
EP  - 198
DO  - 10.1016/j.apcatb.2007.10.022
ER  - 
@article{
author = "Petrović, Srđan and Terlecki-Baričević, Ana V. and Karanovic, Lj. and Kirilov-Stefanov, P. and Zdujić, Miodrag and Dondur, Vera and Paneva, Daniela and Mitov, I. and Rakić, Vesna M.",
year = "2008",
abstract = "Two new series of perovskite-type oxides LaMO3 (M = Mg, Ti, Fe) with different ratio Mg/Fe (MF) and Ti/Fe (TF) in the B cation site were prepared by annealing the precursor, obtained by the mechanochemical activation (MCA) of constituent metal oxides, at 1000 degrees C in air. In addition, two closely related perovskites LaFeO3 (LF) and LaTi0.5Mg0.5O3 (TM (50:50)) were synthesized in the similar way. Using MCA method, perovskites were obtained in rather short time and at room temperature. The samples were characterized by X-ray powder diffraction (XRPD), Xray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), temperature programmed desorption of oxygen (TPD), Mossbauer spectroscopy, BET surface area measurements and tested in methane deep oxidation. According to XRPD analysis all synthesized samples are almost single perovskite phase, with trace amounts of La2O3 phase. Data of Mossbauer spectroscopy identify Fe 31 in octahedral coordination. The activity of perovskite in methane deep oxidation increases in the order TM (50:50)  LT  MF series  LT  TF series. Higher activity of TF samples in respect to MF with similar Fe content can be related to the structural characteristic., mainly to the presence of predominantly most labile oxygen species evidenced by TPD at lowest temperature of oxygen evaluation. In used experimental conditions, the Fe substituted perovskite are thermal stable up to the temperature of 850 degrees C. The stability of Fe active sites is probably the most important parameter responsible for thermal stability of perovskite, but the atomic surface composition also should be taken into account.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation",
volume = "79",
number = "2",
pages = "186-198",
doi = "10.1016/j.apcatb.2007.10.022"
}
Petrović, S., Terlecki-Baričević, A. V., Karanovic, Lj., Kirilov-Stefanov, P., Zdujić, M., Dondur, V., Paneva, D., Mitov, I.,& Rakić, V. M.. (2008). LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation. in Applied Catalysis B-Environmental
Elsevier., 79(2), 186-198.
https://doi.org/10.1016/j.apcatb.2007.10.022
Petrović S, Terlecki-Baričević AV, Karanovic L, Kirilov-Stefanov P, Zdujić M, Dondur V, Paneva D, Mitov I, Rakić VM. LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation. in Applied Catalysis B-Environmental. 2008;79(2):186-198.
doi:10.1016/j.apcatb.2007.10.022 .
Petrović, Srđan, Terlecki-Baričević, Ana V., Karanovic, Lj., Kirilov-Stefanov, P., Zdujić, Miodrag, Dondur, Vera, Paneva, Daniela, Mitov, I., Rakić, Vesna M., "LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation" in Applied Catalysis B-Environmental, 79, no. 2 (2008):186-198,
https://doi.org/10.1016/j.apcatb.2007.10.022 . .
71
65
81

Catalytic combustion of methane over Pd containing perovskite type oxides

Petrović, Srđan; Karanovic, L; Stefanov, PK; Zdujić, Miodrag; Terlecki-Baričević, Ana V.

(Elsevier, 2005)

TY  - JOUR
AU  - Petrović, Srđan
AU  - Karanovic, L
AU  - Stefanov, PK
AU  - Zdujić, Miodrag
AU  - Terlecki-Baričević, Ana V.
PY  - 2005
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/180
AB  - The mixed perovskite type oxides with nominal formula LaTi0.5Mg0.5-xPdxO3, (0  LT = x  LT = 0.10) were prepared by anneling the ethanol solution of precursor in nitrogen flow at 1200 degrees C. X-ray powder diffraction (XRPD) analysis shows that the orthorhombic perovskite structure was found in all investigated samples. However, at least a part of palladium is not incorporated into perovskite structure and remains as separate phase, which is reduced to Pd-0 at 1200 degrees C. X-ray photoelectron spectroscopy (XPS) reveled the presence of Pd2+, which indicate a reoxidation of Pd-0 in the surface layers during cooling. The Pd content in the samples has a small influence on the methane oxidation activity below the temperature of 500 degrees C. At temperatures higher than 500 C, the methane oxidation activity of the sample with x = 0.05 exceeds the activity of the sample with x = 0.10. The sharp increase of methane oxidation activity over the sample with lower content of palladium at about 500 degrees C was ascribed to the higher dispersion of PdO and Pd-0 phases. Thus, the higher contribution of lattice oxygen and possible local change in oxidation state of palladium can be a reason for the enhanced activity. Contrary to the supported Pd/Al2O3 catalyst, the incorporation of palladium into perovskite matrix and interaction of PdO-Pd-0 benefits the activity of smaller particles at higher reaction temperatures.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Catalytic combustion of methane over Pd containing perovskite type oxides
VL  - 58
IS  - 1-2
SP  - 133
EP  - 141
DO  - 10.1016/j.apcatb.2004.11.020
ER  - 
@article{
author = "Petrović, Srđan and Karanovic, L and Stefanov, PK and Zdujić, Miodrag and Terlecki-Baričević, Ana V.",
year = "2005",
abstract = "The mixed perovskite type oxides with nominal formula LaTi0.5Mg0.5-xPdxO3, (0  LT = x  LT = 0.10) were prepared by anneling the ethanol solution of precursor in nitrogen flow at 1200 degrees C. X-ray powder diffraction (XRPD) analysis shows that the orthorhombic perovskite structure was found in all investigated samples. However, at least a part of palladium is not incorporated into perovskite structure and remains as separate phase, which is reduced to Pd-0 at 1200 degrees C. X-ray photoelectron spectroscopy (XPS) reveled the presence of Pd2+, which indicate a reoxidation of Pd-0 in the surface layers during cooling. The Pd content in the samples has a small influence on the methane oxidation activity below the temperature of 500 degrees C. At temperatures higher than 500 C, the methane oxidation activity of the sample with x = 0.05 exceeds the activity of the sample with x = 0.10. The sharp increase of methane oxidation activity over the sample with lower content of palladium at about 500 degrees C was ascribed to the higher dispersion of PdO and Pd-0 phases. Thus, the higher contribution of lattice oxygen and possible local change in oxidation state of palladium can be a reason for the enhanced activity. Contrary to the supported Pd/Al2O3 catalyst, the incorporation of palladium into perovskite matrix and interaction of PdO-Pd-0 benefits the activity of smaller particles at higher reaction temperatures.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Catalytic combustion of methane over Pd containing perovskite type oxides",
volume = "58",
number = "1-2",
pages = "133-141",
doi = "10.1016/j.apcatb.2004.11.020"
}
Petrović, S., Karanovic, L., Stefanov, P., Zdujić, M.,& Terlecki-Baričević, A. V.. (2005). Catalytic combustion of methane over Pd containing perovskite type oxides. in Applied Catalysis B-Environmental
Elsevier., 58(1-2), 133-141.
https://doi.org/10.1016/j.apcatb.2004.11.020
Petrović S, Karanovic L, Stefanov P, Zdujić M, Terlecki-Baričević AV. Catalytic combustion of methane over Pd containing perovskite type oxides. in Applied Catalysis B-Environmental. 2005;58(1-2):133-141.
doi:10.1016/j.apcatb.2004.11.020 .
Petrović, Srđan, Karanovic, L, Stefanov, PK, Zdujić, Miodrag, Terlecki-Baričević, Ana V., "Catalytic combustion of methane over Pd containing perovskite type oxides" in Applied Catalysis B-Environmental, 58, no. 1-2 (2005):133-141,
https://doi.org/10.1016/j.apcatb.2004.11.020 . .
36
40
44