Marković, Sanja

Link to this page

Authority KeyName Variants
orcid::0000-0001-6817-7409
  • Marković, Sanja (3)

Author's Bibliography

Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters

Marković, Sanja; Maciejewska, Natalia; Olszewski, Mateusz; Višnjevac, Aleksandar; Puerta, Adrián; Padrón, José M.; Novaković, Irena; Kojić, Snežana; Fernandes, Henrique S.; Sousa, Sérgio F.; Ramotowska, Sandra; Chylewska, Agnieszka; Makowski, Mariusz; Todorović, Tamara; Filipović, Nenad R.

(Elsevier, 2022)

TY  - JOUR
AU  - Marković, Sanja
AU  - Maciejewska, Natalia
AU  - Olszewski, Mateusz
AU  - Višnjevac, Aleksandar
AU  - Puerta, Adrián
AU  - Padrón, José M.
AU  - Novaković, Irena
AU  - Kojić, Snežana
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Ramotowska, Sandra
AU  - Chylewska, Agnieszka
AU  - Makowski, Mariusz
AU  - Todorović, Tamara
AU  - Filipović, Nenad R.
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5366
AB  - The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters
VL  - 238
SP  - 114449
DO  - 10.1016/j.ejmech.2022.114449
ER  - 
@article{
author = "Marković, Sanja and Maciejewska, Natalia and Olszewski, Mateusz and Višnjevac, Aleksandar and Puerta, Adrián and Padrón, José M. and Novaković, Irena and Kojić, Snežana and Fernandes, Henrique S. and Sousa, Sérgio F. and Ramotowska, Sandra and Chylewska, Agnieszka and Makowski, Mariusz and Todorović, Tamara and Filipović, Nenad R.",
year = "2022",
abstract = "The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters",
volume = "238",
pages = "114449",
doi = "10.1016/j.ejmech.2022.114449"
}
Marković, S., Maciejewska, N., Olszewski, M., Višnjevac, A., Puerta, A., Padrón, J. M., Novaković, I., Kojić, S., Fernandes, H. S., Sousa, S. F., Ramotowska, S., Chylewska, A., Makowski, M., Todorović, T.,& Filipović, N. R.. (2022). Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry
Elsevier., 238, 114449.
https://doi.org/10.1016/j.ejmech.2022.114449
Marković S, Maciejewska N, Olszewski M, Višnjevac A, Puerta A, Padrón JM, Novaković I, Kojić S, Fernandes HS, Sousa SF, Ramotowska S, Chylewska A, Makowski M, Todorović T, Filipović NR. Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry. 2022;238:114449.
doi:10.1016/j.ejmech.2022.114449 .
Marković, Sanja, Maciejewska, Natalia, Olszewski, Mateusz, Višnjevac, Aleksandar, Puerta, Adrián, Padrón, José M., Novaković, Irena, Kojić, Snežana, Fernandes, Henrique S., Sousa, Sérgio F., Ramotowska, Sandra, Chylewska, Agnieszka, Makowski, Mariusz, Todorović, Tamara, Filipović, Nenad R., "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters" in European Journal of Medicinal Chemistry, 238 (2022):114449,
https://doi.org/10.1016/j.ejmech.2022.114449 . .
11
10
9

A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells

Bjelogrlić, Snežana K.; Todorović, Tamara; Cvijetić, Ilija; Rodić, Marko V.; Vujčić, Miroslava; Marković, Sanja; Araskov, Jovana; Janović, Barbara; Emhemmed, Fathi; Muller, Christian D.; Filipovic, Nenad R.

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Bjelogrlić, Snežana K.
AU  - Todorović, Tamara
AU  - Cvijetić, Ilija
AU  - Rodić, Marko V.
AU  - Vujčić, Miroslava
AU  - Marković, Sanja
AU  - Araskov, Jovana
AU  - Janović, Barbara
AU  - Emhemmed, Fathi
AU  - Muller, Christian D.
AU  - Filipovic, Nenad R.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2493
AB  - A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells
VL  - 190
SP  - 45
EP  - 66
DO  - 10.1016/j.jinorgbio.2018.10.002
ER  - 
@article{
author = "Bjelogrlić, Snežana K. and Todorović, Tamara and Cvijetić, Ilija and Rodić, Marko V. and Vujčić, Miroslava and Marković, Sanja and Araskov, Jovana and Janović, Barbara and Emhemmed, Fathi and Muller, Christian D. and Filipovic, Nenad R.",
year = "2019",
abstract = "A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells",
volume = "190",
pages = "45-66",
doi = "10.1016/j.jinorgbio.2018.10.002"
}
Bjelogrlić, S. K., Todorović, T., Cvijetić, I., Rodić, M. V., Vujčić, M., Marković, S., Araskov, J., Janović, B., Emhemmed, F., Muller, C. D.,& Filipovic, N. R.. (2019). A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 190, 45-66.
https://doi.org/10.1016/j.jinorgbio.2018.10.002
Bjelogrlić SK, Todorović T, Cvijetić I, Rodić MV, Vujčić M, Marković S, Araskov J, Janović B, Emhemmed F, Muller CD, Filipovic NR. A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry. 2019;190:45-66.
doi:10.1016/j.jinorgbio.2018.10.002 .
Bjelogrlić, Snežana K., Todorović, Tamara, Cvijetić, Ilija, Rodić, Marko V., Vujčić, Miroslava, Marković, Sanja, Araskov, Jovana, Janović, Barbara, Emhemmed, Fathi, Muller, Christian D., Filipovic, Nenad R., "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells" in Journal of Inorganic Biochemistry, 190 (2019):45-66,
https://doi.org/10.1016/j.jinorgbio.2018.10.002 . .
10
5
11

A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells

Bjelogrlić, Snežana K.; Todorović, Tamara; Cvijetić, Ilija; Rodić, Marko V.; Vujčić, Miroslava; Marković, Sanja; Araskov, Jovana; Janović, Barbara; Emhemmed, Fathi; Muller, Christian D.; Filipović, Nenad R.

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Bjelogrlić, Snežana K.
AU  - Todorović, Tamara
AU  - Cvijetić, Ilija
AU  - Rodić, Marko V.
AU  - Vujčić, Miroslava
AU  - Marković, Sanja
AU  - Araskov, Jovana
AU  - Janović, Barbara
AU  - Emhemmed, Fathi
AU  - Muller, Christian D.
AU  - Filipović, Nenad R.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2623
AB  - A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells
VL  - 190
SP  - 45
EP  - 66
DO  - 10.1016/j.jinorgbio.2018.10.002
ER  - 
@article{
author = "Bjelogrlić, Snežana K. and Todorović, Tamara and Cvijetić, Ilija and Rodić, Marko V. and Vujčić, Miroslava and Marković, Sanja and Araskov, Jovana and Janović, Barbara and Emhemmed, Fathi and Muller, Christian D. and Filipović, Nenad R.",
year = "2019",
abstract = "A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells",
volume = "190",
pages = "45-66",
doi = "10.1016/j.jinorgbio.2018.10.002"
}
Bjelogrlić, S. K., Todorović, T., Cvijetić, I., Rodić, M. V., Vujčić, M., Marković, S., Araskov, J., Janović, B., Emhemmed, F., Muller, C. D.,& Filipović, N. R.. (2019). A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 190, 45-66.
https://doi.org/10.1016/j.jinorgbio.2018.10.002
Bjelogrlić SK, Todorović T, Cvijetić I, Rodić MV, Vujčić M, Marković S, Araskov J, Janović B, Emhemmed F, Muller CD, Filipović NR. A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry. 2019;190:45-66.
doi:10.1016/j.jinorgbio.2018.10.002 .
Bjelogrlić, Snežana K., Todorović, Tamara, Cvijetić, Ilija, Rodić, Marko V., Vujčić, Miroslava, Marković, Sanja, Araskov, Jovana, Janović, Barbara, Emhemmed, Fathi, Muller, Christian D., Filipović, Nenad R., "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells" in Journal of Inorganic Biochemistry, 190 (2019):45-66,
https://doi.org/10.1016/j.jinorgbio.2018.10.002 . .
10
5
11