Synthesis and characterization of Mn(II) and Fe(III) complexes with the condensation product of

thiosemicarbazide and 2-acetylthiazole

Milica J. Savić, Mima Č. Jevtović, Božidar R. Čobeljić, Katarina K. Anđelković, Dragana M.Mitić

¹University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia

²Innovation Centre of Faculty of Chemistry, Belgrade, Serbia

³University of Belgrade – Faculty of Chemistry, Belgrade, Serbia

The ligand **HL** (*E*)-2-(1-(thiazol-2-yl)ethylidene)hydrazine-1-carbothioamide) was synthetized in the reaction of thiosemicarbazide and 2-acetylthiazole in molar ratio 1:1 in water, with 3 drops of 2M HCl. (**Scheme 1**). The reaction of the ligand HL with metal salt $Fe(BF_4)_2 \cdot 6H_2O$ in a molar ratio 1:1 in methanol results in the formation of bis Fe(III) complex with composition $[FeL_2]BF_4H_2O$ (1) (**Scheme 2**). The reaction of the HL ligand with the metal salt $MnCl_2 \cdot 4H_2O$ in a molar ratio 1:1 in methanol/water mixture results in the formation of bis Mn(II) complex (2) with composition $[MnL_2]$ (**Scheme 3**).

In both complexes, the thiosemicarbazone ligand is coordinated in deprotonated form through two NNS donor sets of atoms through thiazole and imine nitrogens and thioenolate sulfur (**Fig. 1**; **Fig. 2**). However, while Fe(III) complex is in the doublet ground state with distorted octahedral geometry, the coordination environment around Mn(II) is distorted trigonal-prismatic, and the sextet state is found to be the ground state. Furthermore, the central metal ions in both cases have the same d⁵ electronic configuration. However, measured magnetism and analysis of the crystal geometries show that these two complexes have a different number of unpaired electrons. We rationalized the results by electronic structure calculations based on density functional theory.

Fig. 1. The complex 1
crystallizes in the
orthorhombic space
group *Pbca*.

Fig 1. The ORTEP drawing of [FeL₂]⁺ complex cation (1)

Fig. 2. The complex 2 crystallizes in the triclinic space group P-1.

Fig 2. The ORTEP drawing of $[Mn(L)_2]$ complex (2)

Fig 3. Spin densities calculated at B97-D/TZP level of theory on crystal structures of $[Fe^{III}\mathbf{L}_2]^+(A)$ high spin; C) low spin) and $[Mn^{II}(\mathbf{L})_2]$ B) high spin; D) low spin). The ground spin state of $[Fe^{III}\mathbf{L}_2]^+$ is low spin. The ground spin state of $[Mn^{II}(\mathbf{L})_2]$ is high spin.

