

University of Belgrade Technical Faculty in Bor 28th International Conference Ecological Truth & Environmental Research

EcoTER'20

PROCEEDINGS

16 - 19 June 2020, Hotel Aquastar Danube, Kladovo, Serbia

University of Belgrade Technical Faculty in Bor 28th International Conference Ecological Truth & Environmental Research

EcoTER'20 PROCEEDINGS

16 - 19 June 2020, Hotel Aquastar Danube, Kladovo, Serbia

PROCEEDINGS

28th INTERNATIONAL CONFERENCE ECOLOGICAL TRUTH AND ENVIRONMENTAL RESEARCH – EcoTER'20

Editor:

Prof. Dr Snežana Šerbula

University of Belgrade, Technical Faculty in Bor

Technical Editors:

MSc Jelena Milosavljević University of Belgrade, Technical Faculty in Bor Dr Jelena Kalinović University of Belgrade, Technical Faculty in Bor

Asst. Prof. Dr Tanja Kalinović

University of Belgrade, Technical Faculty in Bor

Asst. Prof. Dr Žaklina Tasić

University of Belgrade, Technical Faculty in Bor

Asst. Prof. Dr Ana Simonović

University of Belgrade, Technical Faculty in Bor

Publisher: University of Belgrade, Technical Faculty in Bor

For the Publisher: Dean Prof. Dr Nada Štrbac

Printed: GRAFIK CENTAR, Beograd, 60 copies

Year of publication: 2020

ISBN 978-86-6305-104-1

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

502/504(082)(0.034.2) 574(082)(0.034.2)

INTERNATIONAL Conference Ecological Truth & Environmental Research (28 ; 2020 ; Kladovo)

Proceedings [Elektronski izvor] / 28th International Conference Ecological Truth and Environmental Research - EcoTER'20, 16-19 June 2019, Kladovo, Serbia ; [organized by University of Belgrade, Technical faculty in Bor (Serbia)] ; editor Snežana Šerbula. - Bor : University of Belgrade, Technical faculty, 2020 (Beogad : Grafik centar). - 1 USB fleš memorija : ilustr. ; 9 x 6 cm (u obliku kartice)

Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovne strane dokumenta. - Tiraž 60. - Bibliografija uz svaki rad. - Registar.

ISBN 978-86-6305-104-1

а) Животна средина -- Зборници б) Екологија -- Зборници

COBISS.SR-ID 15372809

28th International Conference **Ecological Truth and Environmental Research 2020**

is organized by:

UNIVERSITY OF BELGRADE, TECHNICAL FACULTY IN BOR (SERBIA)

Co–organizers of the Conference:

University of Banja Luka, Faculty of Technology - Banja Luka (B&H)

University of Montenegro, Faculty of Metallurgy and Technology - Podgorica (Montenegro)

University of Zagreb, Faculty of Metallurgy - Sisak (Croatia)

University of Pristina, Faculty of Technical Sciences Kosovska Mitrovica

Association of Young Researchers – Bor (Serbia)

Conference is financially supported by The Ministry of Education, Science and Technological **Development of the Republic of Serbia**

28th International Conference Ecological Truth & Environmental Research 16 - 19 June 2020, Hotel Aquastar Danube, Kladovo, Serbia www.eco.tfbor.bg.ac.rs

HONORARY COMMITTEE

Prof. Dr Zvonimir Stanković, Bor (Serbia)

Dr. Petar Paunović, Zaječar (Serbia)

Dragan Ranđelović, Spec. MBA (Serbia)

Mihajlo Stanković, Special Nature Reservation of Zasavica, Sremska Mitrovica (Serbia)

28th International Conference Ecological Truth Environmental Research & Environmental Research 16 - 19 June 2020, Hotel Aquastar Danube, Kladovo, Serbia www.eco.tfbor.bg.ac.rs

SCIENTIFIC COMMITTEE

Prof. Dr Radoje Pantović, President Prof. Dr Nada Štrbac, Vice President Prof. Dr Snežana Šerbula, Vice President Prof. Dr Šefket Goletić (B&H) Prof. Dr Jan Bogaert (Belgium) Prof. Dr Ladislav Lazić (Croatia) Prof. Dr Džafer Dautbegović (B&H) Prof. Dr A. Nadgórska-Socha (Poland) Prof. Dr Jakob Lamut (Slovenia) Prof. Dr Sebastián Bellú (Argentina) Prof. Dr Borislav Malinović (B&H) Prof. Dr Giulia Guerriero (Italy) Prof. Dr Jelena Šćepanović (Montenegro) Prof. Dr Saša Drmanić (Serbia) Prof. Dr Slavica Sladojević (B&H) Prof. Dr Nada Šumatić (B&H) Prof. Dr Slobodan Jovanović (Serbia) Prof. Dr Nataša Valentić (Serbia) Prof. Dr Jacques Yvon (France) Prof. Dr Natalija Dolić (Croatia) Prof. Dr Dejan Filipović (Serbia) Prof. Dr Milutin Milosavljević Kosovska Prof. Dr Mirjana Rajčić Vujasinović (Serbia) Mitrovica Prof. Dr Nenad Stavretović (Serbia) Prof. Dr Snežana Milić (Serbia) Prof. Dr Slaviša Putić (Serbia) Prof. Dr Dejan Tanikić (Serbia) Prof. Dr Miodrag Žikić (Serbia) Prof. Dr Milan Trumić (Serbia) Prof. Dr Ivan Mihajlović (Serbia) Prof. Dr Maja Vukašinović Sekulić (Serbia) Prof. Dr Jovica Sokolović (Serbia) Prof. Dr Nenad Vušović (Serbia) Prof. Dr Milovan Vuković (Serbia) Dr Jasmina Stevanović (Serbia) Prof. Dr Nada Blagojević (Montenegro) Dr Mirjana Marković (Serbia) Prof. Dr Darko Vuksanović (Montenegro) Dr Jelena Milojković (Serbia) Prof. Dr Irena Nikolić (Montenegro)

28th International Conference Ecological Truth & Environmental Research 16 - 19 June 2020, Hotel Aquastar Danube, Kladovo, Serbia www.eco.tfbor.bg.ac.rs

ORGANIZING COMMITTEE

Prof. Dr Snežana Šerbula, President				
Prof. Dr Snežana Milić, Vice President				
Prof. Dr Đorđe Niko	olić, Vice President			
Prof. Dr Slađana Alagić (Serbia)	Jelena Milosavljević, MSc (Serbia)			
Prof. Dr Milica Veličković (Serbia)	Dragana Medić, MSc (Serbia)			
Dr Ana Simonović (Serbia)	Predrag Stolić, MSc (Serbia)			
Dr Danijela Voza (Serbia)	Aleksandra Papludis, MSc (Serbia)			
Dr Tanja Kalinović (Serbia)	Sonja Stanković, BSc (Serbia)			
Dr Maja Nujkić (Serbia)	Mara Manzalović, English language teacher (Serbia)			
Dr Žaklina Tasić (Serbia)	Enisa Nikolić, English language teacher (Serbia)			
Dr Jelena Kalinović (Serbia)				

PREFACE

The world today is faced with the rapid changes in technology. The excessive unsustainable consumption of fossil fuels and primary raw materials require a multidisciplinary approach in finding adequate sustainable solutions. That is why environmental research and ecological truth are at the focus of the 28th International Conference Ecological Truth & Environmental Research 2020 (EcoTER'20), which will be held at Kladovo, Serbia, 16-19 June 2020. On behalf of the Organizing Committee, it is a great honor and pleasure to wish all the participants a warm welcome to the Conference.

We hope to convey the message of the conference, which is that a transformation of attitudes and behavior would bring the necessary changes. This is also an opportunity for the participants who are experts in this field to exchange their experiences, expertise and ideas, and also to consider the possibilities for their collaborative research.

The 28th International Conference Ecological Truth & Environmental Research 2020 is organized by the University of Belgrade, Technical faculty in Bor, and co-organized by the University of Banja Luka, Faculty of Technology, University of Montenegro, Faculty of Metallurgy and Technology – Podgorica, University of Zagreb, Faculty of Metallurgy – Sisak, University of Pristina, Faculty of Technical Sciences – Kosovska Mitrovica and the Association of Young Researchers, Bor.

These proceedings include 51 papers from the authors coming from the universities, research institutes and industries in 7 countries: Russia, Lithuania, Nigeria, Croatia, Bosnia and Herzegovina, Montenegro and Serbia.

As a part of this year's conference, the third student section is being held. We appreciate the research of the students and their mentors who have made a contribution to the conference. Abstracts of the students' papers have been included into the EcoTER'20 proceedings.

Financial assistance provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia is gratefully acknowledged.

We appreciate the effort of all the authors who have contributed to these proceedings. We would also like to express our gratitude to the members of the scientific and organizing committees, reviewers, speakers, chairpersons and all the Conference participants for their support to EcoTER'20. Sincere thanks go to all the people who have contributed to the successful organization of EcoTER'20.

On behalf of the 28th EcoTER Organizing Committee, Snežana Šerbula, Professor

TABLE OF CONTENTS

Plenary Lecture

Velizar Stankov	vić							
AMDs FI	ROM COP	PER 1	MINI	ES – A DRAM	ATIC THR	EAT T	O LOCAL	
WATER	FLOWS	OR	А	VALUABLE	SOURCE	FOR	COPPER	
PRODUC	TION							

Conference Papers

	Slavica Stevanović, J. Krstić, B. Stojanović, D. Paunović, D. Dimitrijević,	
	<i>J. Veličković</i> The effect of effluent on the water quality in the	
	NIŠAVA	5
-	Ana Čučulović, J. Stanojković, R. Čučulović, S. Nestorović, N. Radaković,	
	D. Veselinović	
	THE DISTRIBUTION OF THE MASS CONCENTRATIONS OF	
	POTASSIUM, THORIUM AND RADIUM IN THE SOILS OF THE TEKIJA	
_	REGION, THE NP ĐERDAP	11
	Suzana Lutovac, M. Gligorić, J. Majstorović, L. Crnogorac	
	EXPERIMENTAL DETERMINATION THE PARAMETERS OF ROCK	
	MASS OSCILLATION EQUATION AT COPPER ORE USING	17
	SIMPSONS'S RULE	17
	Tatjana Anđelković, D. Bogdanović, I. Kostić, G. Kocić	
	COMPARISON OF THE INFLUENCE OF TEMPERATURE AND ULTRASOUND ON DEHP MIGRATION FROM PLASTIC PACKAGING	
	INTO FOOD RECIPIENTS	24
	Tatjana Anđelković, D. Bogdanović, I. Kostić, G. Nikolić, B. Kostić, T. Cvetković,	24
	G. Kocić	
	DETERMINATION OF PHTHALATES IN PVC MEDICAL DEVICES BY	
	FOURIER TRANSFORM INFRARED SPECTROSCOPY	30
-	Milanka Negovanović, L. Kričak	
	REDUCTION OF DRILLING DUST USING DRY DUST COLLECTION	
	SYSTEMS IN SURFACE BLASTING OPERATIONS	36
	Marija Petrović Mihajlović, Ž. Tasić, A. Simonović, M. Radovanović,	
	M. Antonijević	
	DETERMINATION OF PARACETAMOL USING CARBON BASED	
	SENSOR ELECTRODES	42
	Jovica Sokolović, D. Marilović, S. Vasković	
	THE ROLE OF SUSTAINABLE DEVELOPMENT IN THE CEMENT	40
	INDUSTRY IN SERBIA	48

Jelena Kalinović, S. Šerbula, T. Kalinović, J. Milosavljević, A. Radojević, M. Nujkić	
ANALYSIS OF AI, Cr AND Mn IN THE ROOT ZONE SOIL AND PLANT PARTS OF WILD ROSE (<i>Rosa</i> spp.) IN THE BOR AREA	54
Tanja Kalinović, S. Šerbula, J. Kalinović, J. Milosavljević, A. Radojević	
THE DISTRIBUTION OF Al, Fe, Cu, Zn, Pb, Ni, As AND Cd WITHIN THE	
PINE TREES FROM THE CHEMICALLY IMBALANCED	
ENVIRONMENT	60
Jelena Milosavljević, S. Šerbula, T. Kalinović, J. Kalinović, A. Radojević,	00
B. Spalović	
THE RELATIONS BETWEEN SOIL PHYSICO-CHEMICAL PROPERTIES	
AND SOIL ENZYME ACTIVITIES IN LONG-TERM CONTAMINATED	
AREA	66
Igor Kodranov, M. Pergal, D. Manojlović	
TOXICITY SCREENING AFTER DEGRADATION OF	70
ORGANOPHOSPHORUS PESTICIDES WITH CHLORINE DIOXIDE	72
Darko Anđelković, M. Branković, B. Zlatković, M. Radović-Vučić, G. Kocić	
Pistia stratiotes HEAVY METAL UPTAKE POTENTIAL: A STUDY OF	
MULTIPLY LEVEL CADMIUM POLLUTED WATER	77
Miljan Bigović, S. Krivokapić, D. Đurović, N. Cupara, I. Nikolić	
AGRICULTURAL SOIL POLLUTION BY HEAVY METALS IN THE	
MUNICIPALITY OF PLJEVLJA, MONTENEGRO	82
Miljan Vilimonović, V. Cvetković, M. Košanin, G. Grkajac, V. Bogojević	
THE INFLUENCE OF THE PROCESS OF WASHING ORE OF BORN	
MINERALS FROM THE "POBRDJE" DEPOSIT ON THE ENVIRONMENT	88
Nevena Čule, A. Lučić, Z. Miletić, M. Veselinović, S. Mitrović	
REMOVAL OF PHOSPHORUS AND NITROGEN IN MODIFIED	
FLOATING TREATMENT WETLAND	94
Jakov Baleta, L. Lazić, D. Pavlović, D. Cerinski	
NUMERICAL ANALYSIS OF THE INDUSTRIAL POLLUTANTS	
DISPERSION IN URBAN AREA	100
Maja Nujkić, S. Milić, A. Papludis, S. Stanković, A. Radojević, S. Alagić,	
B. Spalović	
WALNUT SHELL AS A BIOSORBENT FOR REMOVAL OF HEAVY	
METAL IONS FROM DIFFERENT SAMPLE SOLUTIONS	106
Aleksandra Papludis, S. Alagić, S. Milić	
DETECTION OF PAHs AS MICRO-POLLUTANTS IN ENVIRONMENTAL	
SOIL AND PLANT SAMPLES	111
Sonja Stanković, M. Antonijević, S. Milić	
SOURCES AND AVAILABILITY OF INORGANIC PHOSPHOROUS IN	
THE SOIL	116
Mihajlo Stanković	
CONTRIBUTION TO THE KNOWLEDGE OF THE DISTRIBUTION OF	
Gias titanus SIMON, 1879 (OPILIONES, PHALANGIIDAE) IN THE	
TERRITORY OF BOSNIA AND HERZEGOVINA	122
Mihajlo Stanković	
23 YEARS OF THE NATURAL COLLECTION OF ZASAVICA RESERVES	128
Darko Anđelković, M. Branković, G. Kocić	120
SUITABILITY OF PROCEDURAL CALIBRATION STANDARDS AFTER	
LONG-TERM STORAGE FOR PESTICIDE ANALYSIS IN APPLE PEEL	136
LONG TERMI STORAGE FOR TESTICIDE ANALTSIS IN ALTEE FEEL	130

Darko Anđelković, M. Branković, G. Kocić			
LABORATORY SCALED EVALUATION OF SORPTION BEHAVIOR FOR			
FIVE PESTICIDES IN APPLE PEEL: EFFECT OF CONTACT TIME			
Tatjana Anđelković, D. Bogdanović, I. Kostić, D. Anđelković, G. Kocić			
THE MIGRATION OF DEHP FROM PLASTIC PACKAGING INTO DAIRY			
PRODUCTS WITH DIFFERENT FAT CONTENT			
Nena Velinov, M. Petrović, M. Radović Vučić, M. Kostić, J. Mitrović, D. Bojić,			
A. Bojić			
OPTIMIZATION AND APPLICATION OF LIGNOCELLULOSIC-Al ₂ O ₃			
BIOSORBENT FOR COPPER IONS REMOVAL FROM WATER	154		
Miljana Radović Vučić, N. Velinov, M. Petrović, S. Najdanović, J. Mitrović,			
D. Bojić, A. Bojić			
REACTIVE DYE CONTAMINATED WATER TREATED BY PHOTO			
DRIVEN ADVANCED OXIDATION PROCESSES	160		
Milica Petrović, N. Velinov, M. Radović Vučić, S. Najdanović, M. Kostić,			
J. Mitrović, A. Bojić			
A NOVEL STAINLESS STEEL/Bi ₂ O ₃ ELECTRODE FOR			
ELECTROCHEMICAL DEGRADATION OF TEXTILE DYE	165		
Đuro Čokeša, M. Marković, M. Gajić-Kvaščev, B. Kaluđerović, S. Radmanović,			
S. Šerbula			
ISOTHERMAL TITRATION CALORIMETRY STUDY OF As(III)	171		
BINDING TO HUMIC ACIDS	171		
Miljan Bigović, S. Krivokapić, I. Milašević, N. Cupara, D. Đurović			
DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS			
(PAHs) CONTENT IN FOOD AND HEY IN PLJEVLJA MUNICIPALITY,	170		
MONTENEGRO	178		
Adeleke Victor Adedayo			
CORROSION BEHAVIOUR OF ZA27 AND ZA27/EGGSHELL	104		
COMPOSITE IN SCOTCH BONNET PEPPER FLUID	184		
Adeleke Victor Adedayo CORROSION BEHAVIOUR OF ZA27 AND ZA27/EGGSHELL			
CORROSION BEHAVIOUR OF ZA27 AND ZA27/EGGSHELL COMPOSITE IN SIMULATED SEA WATER	190		
	189		
<i>Milena Tadić, I. Nikolić, D. Laković, D. Đurović, N. Cupara</i> MODIFIED FLY ASH AS A NEW ADSORBENT FOR Cu ²⁺ REMOVAL			
FROM AQUATIC SOLUTIONS	193		
Branka Kaluđerović, Đ. Čokeša, M. Marković, V. Rajković, M. Srećković	195		
HYDROTHERMAL CARBONIZATION–GREEN PROCESS FOR CARBON			
MATERIAL PREPARATION	198		
Žaklina Tasić, A. Simonović, M. Petrović Mihajlović, M. Radovanović,	170		
M. Antonijević			
THE APPLICATION OF PENCIL GRAPHITE ELECTRODE IN			
ELECTROANALYSIS	203		
Ivan Đorđević, S. Milić, D. Medić, M. Nujkić, A. Papludis	203		
RECOVERY OF METALS FROM SPENT LITHIUM ION BATTERIES	209		
Marina Pešić, S. Milić, M. Nujkić, D. Medić, S. Stanković			
APPLICATION OF SIMULATION METHODS AND ANALYSIS OF THE			
INFLUENCE OF PRECIPITATION REGIME ON TURBIDITY OF KARST			
AQUIFER: A CASE STUDY OF KARST ZLOT'S SPRING (BOR, SERBIA)	215		
Nataša Đorđević, S. Mihajlović, A. Patarić			
DISPOSAL OF FLYING ASH FROM THERMAL POWER PLANTS	221		

Marija Nešić, D. Obratov-Petković, I. Bjedov, D. Skočajić	
EFFECTS OF ALLELOPATHY ON THE SPREAD OF INVASIVE SPECIES	
Aster Lanceolatus WILLD. COMPLEX	225
Ivana Bjedov, D. Obratov-Petković, M. Nešić, S. Belanović-Simić, J. Beloica	
CHANGES IN THE DISTRIBUTION OF Vaccinium L. GENUS IN	
RELATION TO THE SOIL ACIDIFICATION SCENARIO	231
Veselin Bežanović, M. Novaković, M. Živančev, D. Milovanović, D. Adamović	
ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION	
USING ACTIVATED CARBON PREPARED FROM HAZELNUT SHELL	237
Miodrag Živančev, D. Milovanović, V. Bežanović, M. Novaković, M. Petrović,	
D. Ubavin	
CONTRIBUTION OF WASTE MANAGEMENT SECTOR IN NOVI SAD	
TO CLIMATE CHANGE	243
Ljiljana Stosic, D. Stojanovic, K. Lazarevic	
OPINIONS AND ATTITUDES OF THE CITIZENS OF NIS ON	
COMMUNITY NOISE	249
Zoranka Malešević, R. Krgović, M. Jovović	
PHYSICAL-CHEMICAL CHARACTERISTICS OF SM "VELIKI CRLJENI"	
COAL AND ITS EFFECT ON THE ENVIRONMENT	255
Daniela Urošević, Z. Sovrlić, I. Svrkota, M. Mikić, R. Kovačević, M. Šteharnik	
IMPLEMENTATION OF QUALITY CONTROL ON SAMPLED SOIL	
WITH TRIP AND FIELD BLANK	261
Miomir Mikić, D. Urošević, N. Stanić, M. Jovanović, S. Petrović	
ENERGY, RENEWABLE ENERGY SOURCES, POTENTIALS AND	
APPLICATIONS	269
Jovana Bošnjaković, I. Jelić, V. Komadinić	
APPLICATION AND PROPERTIES OF NATURAL FIBER-BASED	
BIOCOMPOSITE MATERIALS – A REWIEV	275
Maja Radić, S. Ćemer, M. Avdagić	
PLANET PRESERVATION THROUGH CLIMATE ACTIONS AND	201
CREATING QUALITY JOBS ONLY	281
Senad Čergić, H. Husić	
PREVENTION OF CONTAMINATION OPEN WATERCOURSES FROM	200
EVACUATION MINE WATER FROM SURFACE MINE TURIJA	286
Ligita Baležentienė	
CROP' CONTRIBUTION TO SEASONAL CARBON EXCHANGE IN TEMPERATE CLIMATE OF CENTRAL LITHUANIA	292
IEWIYEKA LE ULIWA LE UP UEN IKAL LI HUANIA	29Z

Student section

Student: Damnjan Trifunović	
Mentor: Maja Nujkić	
HONEY BEES AS BIOINDICATOR OF ENVIRONMENTAL POLLUTION	299
Student: Nemanja Milošević	
Mentor: Snežana Milić	
THERMOSTABLE PLASTIC POLYMERS	301
Author Index	
	304

TOXICITY SCREENING AFTER DEGRADATION OF ORGANOPHOSPHORUS PESTICIDES WITH CHLORINE DIOXIDE

Igor Kodranov¹, Marija Pergal^{2*}, Dragan Manojlović^{1,3}

¹University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, SERBIA

²University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, SERBIA

³South Ural State University, Lenin prospekt 76, 454080 Chelyabinsk, RUSSIA *marijav@chem.bg.ac.rs

Abstract

Effectiveness, mineralization and toxicity of four organophosphorus pesticides (OPPs) azamethiphos (AZA), dimethoate (DM), fenitrothion (FEN) and malathion (MAL) in water with chlorine dioxide (ClO_2) as degradation agent were investigated. Analyses included toxicity tests of parent pesticides and their degradation products (DPs), using Daphnia magna test organisms, and total organic carbon (TOC) analysis. Toxicity tests showed that all four pesticide DPs were less toxic than parent pesticides, but DM had higher toxic DPs compared to parent AZA, FEN and MAL. All DPs were classified as category III (on a scale from I to V) of toxicity as acutely toxic. TOC analysis showed that AZA has lowest (only 18%) and MAL has highest mineralization (56%). Considering the obtained results, it could be concluded that ClO₂ efficiently degrades AZA, DM, FEN and MAL and represents good solution for a safer environment.

Keywords: organophosphorus pesticides, chlorine dioxide, TOC, toxicity

INTRODUCTION

According to US EPA estimates, organophosphorus pesticides (OPPs) represent about 40% of the world market value [1]. They are the most popular and most used pesticides because of their low cost, wide spectrum of application and multi-pest control capability. The widespread application of the OPPs represents a great potential risk to environment and human life [2]. They could easily reach and contaminate the underground and surface water by leaching or runoff [3].

It has been found that OPPs could be very toxic to human health [2]. They can cause minor and major disruptive disorders, such as allergies, nausea, pancreatitis, spontaneous abortions and death [2,4]. It was reported that OPPs are neurotoxic and high doses of them involve inhibition of acetylcholinesterase [4]. Many researchers have suggested association between post natal exposure of children with OPPs and caused health disorders. Attention deficit hyperactivity disorder was noticed [5], also poorer short-term memory and attention [6], slower motor speed [7], and developmental delay [8]. Because of this and many other health disorders, significant number of OPPs has been restricted by Environmental Protection Agency (EPA) and European Union (EU) [9].

Among the oxidants, chlorine dioxide (ClO₂) has been increasingly employed as disinfectant in water treatment systems due to its antibacterial and antiviral properties [10]. As a powerful oxidant, ClO₂ can remove many organic and inorganic pollutants [11,12]. Previous studies reported oxidative degradation using ClO₂ of some pesticides and pharmaceuticals [3,13,14].

The aim of this study was to investigate effectiveness, mineralization and toxicity of four OPPs (AZA, DM, FEN and MAL (Figure 1)) and their DPs, in water using ClO_2 as degradation agent. Toxicity screening was examined with the test organisms *D. magna*. Also, the mineralization degree was obtained by total organic carbon (TOC) analysis.

MATERIALS AND METHODS

Chemicals

In this research AZA, DM (Makhteshim Agan, 98%, obtained from the Institute for Plant Protection, Belgrade), FEN and MAL (Sigma Aldrich, 97%) were used. Concentrations of pesticides in experiments were 10 mg/L for AZA and DM and 20 mg/L for FEN and MAL. Reason why we used 20 mg/L AZA and DM, not 10 mg/L like FEN and MAL, was the quantification limit on high performance liquid chromatography (HPLC) for these two pesticides which becomes important for trace monitoring in the final steps of degradation. For toxicity test pesticides were diluted in medium, prepared according to standard procedure OECD Guideline 202, 2004 [15, 16]. ClO₂ was prepared by dissolving sodium chlorite (TwinOxide®) and sodium bisulphate (TwinOxide®) in 1 L of deionized water and standardized with 0.1000 mol/dm³ standard solution of sodium thiosulphate according to the Standard Method SRPS EN 12671:2009 [17].

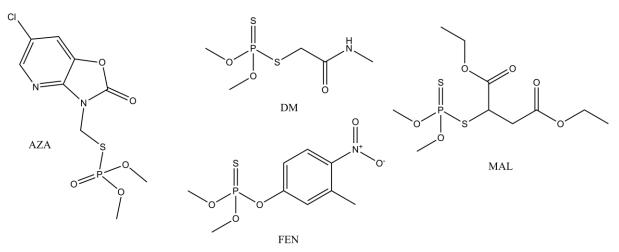


Figure 1 Structures of organophosphorus pesticides

Experimental

Optimization of pesticide degradation and preparation of samples for TOC analysis

The optimal conditions for degradation of OPPs with ClO_2 in deionized water had to be determined. Degradation using different concentrations of ClO_2 (5 and 10 mg/L), degradation

time (0.5, 1, 2, 3, 6 and 24 h) and pH values (2, 3, 7, 9) was studied. The percentage of degradation was determined by HPLC analysis with photodiode array detection (DAD) as described previously by Pergal *et al.* [3]. Samples with the highest degree of degradation for each pesticide were analyzed by TOC analysis. TOC analysis was done on Zellweger LabTOC 2100 TOC Analyzer in accordance with method ISO 8245:2007 [3]. The optimal conditions for degradation of each pesticide were also applied to preparation of samples for toxicity tests.

Sample preparation for toxicity tests

All samples were diluted in medium prepared according to Klüttgen *et al.* [16]. One part of initial pesticide solution was taken for toxicity test and other part was set to optimal parameters and treated with optimal concentration of ClO_2 for obtaining of DPs. Test organisms *D. magna* were exposed to solution of pesticides and their DPs. A detailed examination using toxicity tests can be found in our paper Pergal *et al.* [3].

RESULTS AND DISCUSSION

Results of degradation efficiency

Optimization of OPPs degradation (AZA, DM, FEN and MAL) was performed in deionized water under sunlight conditions described previously by Pergal *et al.* [3]. In Table 1 are presented summarized optimal conditions for OPPs degradation (ranged from 81 to 100% in efficiency) and which were determined using HPLC-DAD analysis.

Sample name	Concentration of sample (mg/L)	Concentration of ClO ₂ (mg/L)	pH value	Duration of degradation (h)	Degree of degradation (%)
Azamethiphos	10	10	9	0.5	100
Dimethoate	10	10	7	24	97
Fenitrothion	20	10	2	24	81
Malathion	20	5	7	24	98

Table 1 Optimized conditions for degradation of pesticides with ClO₂

Toxicity test results

Toxicity tests of the pesticide solutions and their DPs were evaluated using test organisms *D. magna*.

After a 48 h of test period number of live and dead neonates was determined, and LC_{50} (lethal concentration which causes 50% mortality in the daphnids) was calculated for each pesticide and its DP. Results of LC_{50} for parent pesticides and DPs are shown in Table 2. Solution of parent AZA has the highest mortality of neonates and FEN has the lowest mortality as compared to other parent pesticides, but it was still high. For DPs of pesticides, AZA has higher LC_{50} value, while DM has the lowest LC_{50} value compared to other pesticides. DM has the highest and AZA has the lowest mortality. The pesticides degradation products were less toxic than parent pesticides. When compared the toxicity results of pesticide solutions with their DPs, it could be concluded that ClO_2 degradation of AZA was

successful. Also, there should be noted that in case of other tested pesticides toxicity of DPs was noticeable lower in comparison to starting pesticide solutions.

Sample name	LC_{50} (%, v/v) 48h	Sample name	LC ₅₀ (%, v/v) 48h
Azamethiphos	2.5	Fenitrothion	23.2
Azamethiphos DP	61.3	Fenitrothion DP	45.8
Dimethoate	12.2	Malathion	12.9
Dimethoate DP	35.4	Malathion DP	42.6

Table 2 LC_{50} values of pesticides and their degradation products (DPs) after 48 h of ClO₂ treatment

A toxicity unit (TU) was calculated for each sample using the LC_{50} results. On the scale from I to V [18] all DPs can be categorized in class III as acutely toxic.

Results of mineralization analysis

Mineralization percent was determined by TOC analysis for each pesticide and its DP. The results of mineralization are presented in Table 3. Results show that AZA and DM have low level of mineralization and MAL has the highest mineralization level as compared to other pesticides. But, low level of mineralization does not always mean that something is harmful or toxic. When all results have been compared (HPLC analysis, *D. magna* test and TOC analysis), we could see that AZA has a good degradation percent (100%) and its DP relatively high LC_{50} (61%). It means that CIO_2 degrades AZA very efficiently, with significantly less toxic DPs but they are still of organic origin. FEN and MAL both have good degree of degradation (81 and 98%, respectively) and mineralization (45 and 55%) and less toxic DPs. In case of DM, even CIO_2 degrades this OPP with degradation efficiency of 97%, CIO_2 creates relatively toxic DPs and they are mostly of organic origin (mineralization of only 23%).

Sample name	Degree of mineralization (%)
Azamethiphos DP	17.7
Dimethoate DP	22.5
Fenitrothion DP	45.2
Malathion DP	55.8

Table 3 Mineralization degree of degradation products (DPs) of pesticides

CONCLUSIONS

In this research, toxicity of AZA, DM, FEN and MAL pesticides and their DPs, after degradation with ClO_2 under optimal conditions for each pesticide, was studied. The toxicity test was done on *D. magna* neonates. Degree of mineralization was also obtained by TOC analysis for pesticides and DPs.

Results showed that AZA has a good degradation percent (100%) and relatively high LC_{50} (61%). It means that ClO₂ degrades AZA very well, with significant less toxic DPs but they are still of organic origin (18% of mineralization). FEN and MAL both have good degree of

degradation (81 and 98% respectively) and mineralization (45 and 56%) and less toxic DP. In case of DM, ClO_2 degrades this OPP with degradation degree of 97%, ClO_2 creates relatively toxic DPs and they are mostly of organic origin (mineralisation of only 23%).

The results of toxicity tests showed that all DPs of pesticides belong to class III as acutely toxic. Further research should be directed towards obtaining less toxic products.

ACKNOWLEDGEMENT

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, (Grant No. 451-03-68/2020-14/200026; 451-03-68/2020-14/200168). The authors would like to thank TwinOxide-RS d.o.o. for providing components for the preparation of ClO_2 (TWINS preparation).

REFERENCES

- D. Atwood, C. Paisley-Jones, Pesticides industry sales and usage 2008-2012 market estimates, *Available on the following link*: https://www.epa.gov/sites/production/files/ 2017-01/documents/ pesticides-industry-sales-usage-2016_0.pdf
- [2] M. Triassi, A. Nardone, M. C. Giovinetti, et al., Sci. Total Environ; 678 (2019) 741–754.
- [3] M. V. Pergal, I. D. Kodranov, M. P. Pergal, et al., Water Air Soil Pollut; 229 (2018) 310.
- [4] N. Oya, Y. Ito, T. Ebara, et al., Environ. Int; 134 (2020) 105294.
- [5] M.F. Bouchard, D.C. Bellinger, R.O. Wright, et al., Pediatrics; 125 (2010) 1270–1277.
- [6] P.Z. Ruckart, K. Kakolewski, F.J. Bove, *et al.*, Environ. Health. Perspect; 112 (2004) 46– 51.
- [7] D.S. Rohlman, T.A. Arcury, S.A. Quandt, et al., Neurotoxicology; 26 (2005) 589–598.
- [8] P. Liu, C. Wu, X. Chang, et al., China. Environ. Health. Perspect; 124 (2016) 1637–1643.
- [9] L. Epstein, Annu. Rev. Phytopathol; 52 (2014) 377-402.
- [10] M.M. Huber, S. Korhonen, T.A. Ternes, et al., Water. Res; 39 (2005) 3607–3617.
- [11] A. Zhang, Y. Li, Y. Song, et al., J. Haz. Mat; 276 (2014) 499–509.
- [12] L. Xu, G. Csekő, A. Petz, et al., J. Phys. Chem. A; 118 (2014) 1293–1299.
- [13] Y.L. Wang, H.J. Liu, Y.H. Xie, et al., Chem. Eng. J; 279 (2015) 409-415.
- [14] P. Wang, Y.L. He, C.H. Huang, Water. Res; 44 (2010) 5989–5998.
- [15] OECD Guideline for testing of chemicals (2004) Daphnia sp. Acute Immobilisation Test. OECD Guideline 202. Available on the following link: https://www.oecdilibrary.org/docserver/9789264069947-en.pdf?expires=1588348144&id=id&accname=gue st &checksum=7AEA23DC800CF46AA9078F82C28225B5
- [16] B. Klüttgen, U. Dülmer, M. Engels, et al., Water. Res; 28 (1994) 743–746.
- [17] SRPS EN 12671:2009, Chemicals used for treatment of water intended for human consumption–Chlorine dioxide. *Available on the following link*: https://www.iss.rs/la/standard_/?natstandard_document_id=17165
- [18] G. Persoone, B. Marsalek, I. Blinova, et al., Environ. Toxicol; 18 (2003) 395-402.