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Abstract: Raspberries are considered valuable fruits due to their high levels of nutrients and phy-
tochemicals, which have many beneficial effects on humans. As many external factors affect the
composition of these fruits (the type of cultivation, soil characteristics, ripeness, storage time and
post-harvest technologies, cultivar/genotype, and climatic conditions), the goal of this study was
to analyze different raspberry cultivars grown in Norway. Considering that Norway is a country
with specific climatic conditions, as well as has a limited period of fruit vegetation, another impor-
tant goal of this study was also to compare raspberries from different Norwegian areas, as well as
different grown cultivars. Modern analytical techniques, such as high-performance anion-exchange
liquid chromatography with pulsed amperometric detection (HPEAC-PAD), ultra-high-performance
liquid chromatography with diode array detector coupled to triple quadrupole mass spectrometry
(UHPLC-DAD MS/MS), and inductively coupled plasma–optical emission spectrometry (ICP-OES),
provided a detailed examination of the raspberry extract samples. Based on their high levels of min-
erals (especially N, P, and K), organic acids (predominantly citric and malic acids), sugars (glucose,
fructose, sucrose, and galactose), and polyphenols (ellagic acid, syringic acid, quercetin, and rutin),
Norwegian raspberries could be considered fruits with increased health-beneficial compounds. The
chemical composition of the studied cultivars depended on the locality of growth.

Keywords: Rubus idaeus L.; polyphenols; sugars; element content; organic acids; geographical origin

1. Introduction

Raspberry (Rubus idaeus L.) belongs to the genus Rubus, which comprises 12 subgenera,
more than 500 species, and thousands of cultivars. It is accepted that the place of origin of
Rubus idaeus is the Ida Mountains in Turkey [1]. The domestication of raspberry started
when the Romans spread it throughout Europe in the IV century. Its popularity increased
by the 1500s, when its cultivation was all over Europe. Nowadays, the subgenus Idaeobatus
(raspberries) is distributed in North America, Europe, Africa, and Asia, and it is the most
commercially important one.

Rubus idaeus production is an important high-value horticultural industry in Europe
(mostly in northern and central European countries) because it provides incomes directly
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from agriculture and indirectly from food processing and confectionery. The world rasp-
berry production occurs on more than 127 k ha, bearing ~882 k tons, where Europe leads
with nearly three-quarters of the total quantity of raspberries on an annual basis. Russia
produces ~174 k tons, Mexico is in second place with ~129 k tons, and Serbia is in third place
with ~120 k tons. Global raspberry production grew by 21.9% in the last five years [2,3].

Berry fruits, especially raspberries, are considered enjoyable, refreshing fruits with an
outstanding taste and aroma that provide energy and contribute to a balanced diet. They
are consumed as table fruit, but very often, they are sold as frozen (whole, crumble, and
block), canned, or dried and are used for making raspberry puree and juice concentrate.
They are considered to be a plant from nature’s treasure chests due to their high levels of
many nutrients, including essential minerals (magnesium, potassium, copper, and iron),
sugars, organic acids, vitamins, carotenoids, phenols, fatty acids, stilbenes (resveratrol),
tannins, lignans, and dietary fibers [4–8].

The contents of nutrients and antioxidant capacity of raspberries depend on the type
of cultivation, soil characteristics, ripeness, storage time, and post-harvest technologies,
but the cultivar (genotype) seems to be the most important [9,10]. In general, late-season
cultivars store much higher levels of phenolics than early-season cultivars, so some breeding
programs are selecting genotypes with increased contents of beneficial compounds [11].
A changing climatic factor during the growth and ripening of raspberries (light intensity,
photoperiod, temperature, wind, precipitation, and pests) can significantly affect the quality
of fruits [12,13].

Raspberry fruits are an excellent source of vitamin C, which is known to strengthen
the immune system and prevent colds, especially during the days of pandemia [14,15]. Its
fruits are a good source of potentially health-promoting compounds because they contain
diverse levels of carotenoids [16], unsaturated fatty acids (linoleic acid (18:2), α-linolenic
acid (18:3), and oleic acid (18:1)), tocopherols (predominantly γ-tocopherol) [17,18], phenols
(anthocyanins (derivatives of cyanidins), ellagitannins (sanguiin H-6 and lambertianin
C) and ellagic acid, flavonoids (myricetin, cynarosid, resveratrol, quercetin, kaempferol,
vitexin, rutin, and apigenin), tannins, lignans, phenolic acids, and stilbenes), which confer
protection against oxidative stress and have cytoprotective activities [19]. Fruits show a
wide range of effects, including antimutagenic, antimicrobial, anticancer, antidiabetic, anti-
inflammatory, antioxidant, vasodilatory, and cardioprotective properties [20–23]. Natural
phenols from raspberries show protective effects against metabolic disorders such as dia-
betes and obesity and against neurodegenerative diseases such as Alzheimer’s, Parkinson’s,
or Huntington’s disease [24,25]. Raspberry juice reduces the growth of Salmonella enterica,
Echerihia coli, and Staphylococcus aureus [26,27]. Besides all of these advantages, raspberry
fruits have two allergenic proteins, Rub i 1 and Rub i 3, as stated by many authors [28,29].

In Norway, raspberries are produced on 400 ha, with total yields of ~2060 t [2]. His-
torically, raspberry production in Norway reached an all-time high of 4111 tons in 1988.
Raspberry production is organized both in open fields and in tunnels along the west
coast fjords up to 65◦ N, where the climate has proved to be very suitable for this kind of
production. The cultivar ‘Veten’ (intended for jam production) was the main cultivar for
more than 30 years, but nowadays, the Scottish cultivar ‘Glen Ample’ (intended for fresh
consumption) dominates the raspberry industry.

Given the remarkable importance of this berry species and its improved nutritional
quality, which can be considered ‘functional food’, and the fact that, so far, several studies
have covered only a few cultivars [10,30–32], the aim of this study was to evaluate quality
indicators of raspberry cultivars that are grown in Norway. The results of such a compre-
hensive study can help producers and consumers to choose the cultivar with the highest
quality for growing, processing, and fresh consumption and breeders to select genotypes
that can be used in subsequent breeding programs, which are aimed at creating cultivars
with increased phytochemicals.
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2. Materials and Methods
2.1. Chemicals and Standards

Methanol (HPLC grade) was purchased from Sigma-Aldrich (Steinheim, Germany),
while formic acid and acetonitrile (both MS grade) were from Merck (Darmstadt, Ger-
many). Sugar standards were purchased from Tokyo Chemical Industry (TCI, Zwijndrecht,
Belgium), while standards of phenolic compounds (protocatechuic acid, syringic acid,
chlorogenic acid, caffeic acid, p-coumaric acid, ellagic acid, aesculetin, rutin, quercetin,
kaempferol, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, kaempferol 3-O-glucoside,
phlorizin, eriodictyol, naringenin, and naringin) were purchased from Sigma-Aldrich
(Steinheim, Germany). The sugar alcohol (sorbitol, glycerol, galactitol, and mannitol) and
organic acid (citric, maleic, malic, pyruvic, shikimic, lactic, propionic, butyric, quinic, ox-
alic, and fumaric acid) kit obtained from Sigma-Aldrich (Steinheim, Germany) was used
for the determination of polyols and organic acids. In addition, 50% sodium hydroxide
solutions in water, sodium acetate trihydrate, and sugar standards (glucose, fructose, su-
crose, arabinose, trehalose, turanose, galactose, ribose, maltose, isomaltose, maltotriose,
isomaltotriose, xylose, melibiose, panose, rhamnose, raffinose, and stachylose) were also
purchased from Sigma-Aldrich (Steinheim, Germany). External calibration solutions were
made from certified plasma standard solutions: Multi-Element Plasma Standard Solution 4,
Specpure®, 1000 µg/mL (Alfa Aesar GmbH & Co KG, Kandel, Germany), and ILM 05.2
ICS Stock 1 (VHG Labs, Inc.—Part of LGC Standards, Manchester, NH, USA) were used for
the determination of minerals by ICP-OES. For microwave digestion, pressure-resistant
PTFE vessels (volume 100 mL) consisting of a fluoropolymer liner were used. Nitric acid
(HNO3, 65 wt. %) and hydrogen peroxide (H2O2, 30 wt. %) were from Suprapur®, Merck
KGaA (Darmstadt, Germany). Trolox standard and gallic acid were purchased from Sigma-
Aldrich (Steinheim, Germany). Ultra-pure water (0.055 mS/cm) was obtained by using
a Thermo fisher TKA MicroPure water purification system and was used to prepare the
standard solutions and blanks. The cartridges for solid-phase extraction (SPE) of sample
extracts were Strata C18-E type (500 mg per 3 mL), obtained from Phenomenex (Torrance,
CA, USA). Syringe filters (15 mm, 0.45 µm, and 22 µm) were purchased from Supelco
(Bellefonte, PA, USA).

2.2. Plant Materials

Raspberry fruits were collected in two areas in Norway (Figure 1), Njøs Fruit and
Berry Center, Leikanger (at latitude 61◦10′43.2′′ N, longitude 6◦51′34.3′′ E), along the
Sognefjord, Western Norway, and Norwegian University of Life Science (NMBU) (at latitude
59◦66′87.6′′ N, longitude 10◦76′82.4′′ E), Eastern Norway. The main raspberry production
area in Norway is located along the Sognefjord. The fjord areas have a marine climate,
which is under the influence of the Gulf Stream. Summers are cool and winters are mild.
Frost damage to fruit trees, either during the winter or during blossom time, rarely occurs.
The snow-covered mountains provide protection from high amounts of rain from the west.

The annual average temperature in both years of study (2019/2020) at Leikanger
was 8.1 ◦C and 8.7 ◦C, respectively. The lowest temperature was recorded on 6 February
(−6.6 ◦C), and the highest occurred on 27 July (32.5 ◦C) in 2019. The following year, the
lowest temperature was recorded on 26 February (−3.2 ◦C), and the highest occurred on
27 June (29.1 ◦C). The total rainfall in those years was 1019 mm and 1219 mm, with May
as the driest month. NMBU has more inland climate with colder winters and warmer
summers. In this area, winter frost and blossom frost can happen and damage the fruit
trees. The average temperature was 6.6 ◦C in 2019 and 7.9 ◦C the year after. The lowest
temperature was recorded on 29 January (−19.2 ◦C), and the highest occurred on 28 July
(31.2 ◦C) in 2019. The year after, the coldest day was 5 February (−11.5 ◦C), and the warmest
day was 18 August (30.3 ◦C). The amount of rainfall was 593 mm in 2019 and 659 mm in
2020. Both sites had a sandy soil that easily drained, and trickle irrigation was provided.
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Figure 1. Sampling sites in Norway; Njøs Fruit and Berry Center and University of Life
Science (NMBU).

Management was implemented according to agricultural practices for the areas. The
fruits were picked when visually regarded as fully ripe during the end of July/beginning of
August. In total, fruits from 18 raspberry cultivars were collected during the two seasons in
the years 2019 and 2020. Cultivars ‘Stiora’, ‘Varnes’, ‘Asker’, ‘Balder’, ‘Anitra’, ‘Borgund’,
‘Ninni’, ‘Agat’, ‘Veten’, ‘Preussen’, and ‘Vene’ were picked from Njøs, while ‘Malling June’,
‘2. Ninni’, ‘Cascade delight’, ‘Glen Ample’, ‘2.Veten’, ‘Glen Fyne’, and ‘Ru’ were collected
from NMBU.

2.3. Sample Preparation

The samples of harvested raspberries were dried in an oven at 40 ◦C for about ten days
(to a consistent mass). The average value of the moisture content in all raspberry samples
was 80 (±4)%. Air-dried raspberry samples were pulverized in an A 10 basic analytical mill
(IKA-Werke GmbH & Co., Staufen im Breisgau, Germany). All samples were measured in
duplicate and expressed as the dry weight (dw) of the samples.

2.4. Preparation of Extracts

The raspberry extracts for all analyses (minerals, organic acids, sugars, sugar alcohols,
and phenolic content, as well as antioxidant activity) were prepared by the procedure
previously described in our paper [33].

2.5. Methods

The contents of minerals in raspberry extract samples were determined by inductively
coupled plasma with optical emission spectrometry (ICP-OES) using a Thermo Scientific
iCAP 6500 Duo ICP (Thermo Fisher Scientific, Cambridge, UK) spectrometer equipped with
a RACID86 Charge Injector Device (CID) detector [33]. Organic acids, sugars, and sugar
alcohols were analyzed by high-performance anion-exchange chromatography with pulsed
amperometric detection (HPAEC-PAD) using a DIONEX ICS 3000 DP liquid chromatograph
(Dionex, Sunnyvale, CA, USA) under different conditions [33]. Analysis of phenolic
compounds was performed by ultra-high-performance liquid chromatography (UHPLC)
with mass spectrometry (MS). Otherwise, phenolic quantification was determined by
UHPLC-DAD MS/MS using a Dionex Ultimate 3000 UHPLC system connected to a TSQ
Quantum Access Max triple quadruple (QqQ) mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) [33]. Antioxidant activity expressed as total phenolic content (TPC)
and radical scavenging activity (RSA) were determined using UV-Vis spectrophotometry
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(Thermo Scientific Evolution 600; Thermo Fisher Scientific Inc.). All following procedures
for the measurements were previously described in our recent study [33].

2.6. Statistical Analysis

Principal component analysis (PCA) enabled an easier understanding of the patterns of
the analyzed data by providing information about specific variables that interact similarly
with each other. The analysis results of 18 samples by PCA analysis for analytical variables
such as minerals, sugars, organic acids, and phenol content are shown in dendrograms and
biplots. The data were explored using StatSoft Statistica 12 (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion
3.1. Determination of Minerals

In analyzed samples of Norwegian raspberries, 13 micro- and macronutrients were
determined, and average values of their contents for a two-year period are presented in
Table 1. In all samples, the most abundant macroelement was shown to be nitrogen, with an
amount of about 2%. The second most abundant macroelement was P (Table 1), with values
ranging from 7040.7 (‘Asker’) to 12195.1 (‘Preussen’) mg/kg in Njøs samples and between
4803.5 (‘Ru’) and 8245.8 (‘Glen Fyne’) mg/kg in NMBU samples. The third most widespread
macroelement in Norwegian raspberries was potassium, with values in the range between
2028.1 (‘Malling June’) and 3152.8 mg/kg (‘Glen Ample’) for NMBU raspberries and
2301.4 (‘Agat’) and 3920.9 (‘Ninni’) mg/kg for Njøs samples. In samples from both areas, S
content ranged from 383.8 to 630.2 mg/kg, while Mg and Ca quantities were similar and
ranged from 172.1 to 276.1 mg/kg and from 211.4 to 336.9 mg/kg, respectively. Based on
the results given in Table 1, raspberry samples from the Njøs area had higher macronutrient
contents compared to NMBU samples.

In different raspberry samples from Brazil [7], the most dominant macronutrients
were nitrogen and phosphorus, followed by potassium. Calcium and magnesium contents
in investigated Brazilian raspberries were lower (Ca content in the range 77–112 mg/kg
dry weight and Mg content of 122–147 mg/kg dry weight) when compared to our results
(Ca content in the range 214–337 mg/kg dry weight and Mg content of 172–276 mg/kg
dry weight). In investigated frozen raspberry samples grown in Serbia, the most common
element was found to be potassium, followed by calcium and magnesium [34]. However, it
must be noted that among 18 investigated minerals, phosphorus and nitrogen were not de-
termined in these raspberry samples. In investigations conducted by some authors [35,36],
potassium stood out as the most represented mineral, followed by phosphorus, calcium,
and magnesium, in fresh red raspberries. According to a published study [37], among
other minerals, raspberries are valued due to their rich content of potassium. In another
study [38], the authors reported lower contents of P, K, Ca, and Mg in Brazilian berries.
Given the well-known significance of N, P, and K in improving crop production, the
additional importance of these elements in the plant can be noticed. Besides that, their
accumulation in plants could be influenced by the soil.



Horticulturae 2022, 8, 765 6 of 25

Table 1. The averages of the values of the contents (mg/kg; except N: mass %, i.e., g/100 g) of micronutrients (Al, B, Cu, Fe, Mn, and Zn) and macronutrients (N, P, K
Ca, and Mg) in 18 raspberry extract samples during the two-year collection from two Norwegian regions (Njøs No. 1–No. 11 and NMBU No. 12–No. 18) (p ≤ 0.05).

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

Elements ‘Stiora’ ‘Varnes’ ‘Asker’ ‘Balder’ ‘Anitra’ ‘Borgund’ ‘Ninni’ ‘Agat’ ‘Veten’ ‘Preussen’ ‘Vene’ ‘Malling
June’ ‘2. Ninni’ ‘Cascade

delight’
‘Glen

Ample’ ‘2.Veten’ ‘Glen
Fyne’ ‘Ru’

Al 10.25 10.50 3.33 4.61 6.45 6.34 7.37 6.95 7.43 7.70 9.40 5.37 3.98 6.47 7.13 8.31 5.54 4.48 5.56
B 3.96 3.12 3.32 2.32 3.19 3.46 3.93 3.91 3.67 2.39 3.35 3.11 3.70 3.76 5.42 4.31 4.74 2.87 4.15

Cu 2.37 1.94 1.25 1.61 2.19 1.83 2.09 2.41 1.88 3.12 1.96 2.00 1.69 1.51 1.91 1.58 2.19 1.37 3.12
Fe 11.11 10.55 8.44 8.33 9.12 10.68 9.51 9.20 9.04 10.14 8.39 18.45 24.35 17.91 13.10 13.02 10.98 8.57 4.50

Mn 1.61 1.59 3.13 1.36 2.23 1.38 1.58 2.98 2.92 1.86 2.58 2.25 2.85 2.30 3.33 3.72 2.81 3.01 5.60
Zn 20.38 16.22 14.77 10.53 15.35 17.21 15.62 16.64 17.74 18.96 12.17 16.44 13.63 16.11 14.39 15.74 17.48 11.38 3.56
Ca 297.45 220.34 277.82 263.70 253.44 301.91 238.53 211.40 293.36 327.70 250.47 266.73 273.54 241.84 239.29 336.89 268.78 262.95 2.71
K 2466.81 3687.23 2802.32 2483.29 3103.56 2740.54 3920.87 2301.38 3120.06 3545.19 2377.33 2028.05 2554.99 2355.77 3152.81 2800.06 2839.98 2403.43 4.95

Mg 210.68 202.69 201.54 186.14 244.42 215.89 188.48 192.95 276.09 240.45 234.78 188.48 184.58 177.16 202.49 208.20 198.63 172.09 5.63
Na 38.42 15.55 9.22 14.77 25.44 20.39 26.06 37.93 43.04 <0.50 42.58 7.22 20.94 16.20 36.89 30.85 22.24 16.58 4.50
P 10,034.66 10,562.90 7040.68 7194.57 7771.83 7826.10 9710.59 8233.57 9594.57 12,195.08 11,725.16 5180.77 5957.55 6310.10 8523.35 7290.04 8245.82 4803.48 3.03
S 630.19 464.48 488.82 383.76 594.56 512.05 452.30 464.13 523.69 608.01 515.84 499.44 458.74 449.42 529.52 528.13 571.47 443.15 3.36

N (%) * 2.03 2.05 1.94 1.87 2.20 1.86 1.88 1.97 1.95 1.91 2.06 1.96 2.02 2.14 2.34 2.21 2.11 2.03 2.43

* N is the only one expressed in mass % (g N/100 g sample dw); the range of N in the samples is 18,600–23,400 mg N/kg.
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Micronutrients are also important for plants, and they are present in small amounts. In the
investigated raspberry samples, the most abundant micronutrients were Zn (10.53–20.38 mg/kg),
Fe (8.33–18.45 mg/kg), and Al (3.33–10.50 mg/kg). Based on the results given in Table 1,
raspberry samples from the Njøs area had similar micronutrient and higher macronutrient
contents compared to NMBU samples. In samples from NMBU, the contents of Fe were
higher (Table 1). The typical acidic type of soil was stated as the reason for the higher
Fe content in raspberries from Brazil [38]. Moreover, according to Stojanov et al. [9], the
response of some elements, including Zn, is environment-dependent, even in the interac-
tion with the fertilizer. According to other authors [38], published results of Fe and Zn
contents in raspberries, as well as in other berries, are similar to the results in the present
study, but they expressed content in relation to the fresh weight, which is contrary to our
results. Furthermore, as raspberries accumulate a lot of iron from the environment [36],
the obtained results could be an additional indicator of habitat influence. In addition, the
significant contribution of raspberry to the reference dietary intake of Fe was emphasized in
the literature data [7,38]. Based on these results (Table 1), raspberry samples from Norway
possess valuable nutrient contents.

3.2. Determination of Fruit Acids

Generally, acids are also important for fruit flavor, but the sweet taste is negatively
correlated with oxalic acid, citric acid, quinic acid, and total acids [39]. In the investigated
raspberry samples, citric and malic acids were the main organic acids (Table 2). In all
analyzed berry fruits, fumaric and shikimic acids were present in lower amounts. The
contents of quinic and shikimic acids (Table 2) were comparable to those reported for
blueberry, apple, and pear, which were dependent on the ripening period of fruits [40].

The values obtained for citric acid (Table 2) were higher than the results reported
by others [41] (in relation to fresh weight), who also stated that citric acid was the main
non-volatile organic acid in all four raspberry cultivars from Spain. Otherwise, their
reported malic acid content (fresh weight) was higher than in our samples (dried weight).
Additionally, Polish authors [14] showed small differences in the contents of citric and malic
acids between fresh and dried raspberry samples. However, they reported significantly
higher values of malic and citric acids (by a few orders of magnitude) [14].

3.3. Determination of Sugars

The average values of sugar content determined in dried raspberry samples are
presented in Table 3. In all investigated cultivars, the most abundant were glucose and
fructose, with ranges of 187.10–330.67 and 129.23–235.68 g/kg, respectively (Table 3).
Considering that fructose, as fruit sugar, is a valuable compound (and has a low glycemic
index), it increases the nutritional value of raspberries [35]. In addition, the sugar content is
also important due to its effects on the taste and acidity of raspberries, as well as consumer
preferences [40].

The content of sucrose was from 0.91 (in cultivar ‘Preussen’) to 53.19 g/kg (‘Glen
Ample’), while for galactose, it was from 11.35 (in ‘2. Ninni’) to 41.00 g/kg (in ‘Preussen’).
Interestingly, the cultivar ‘Glen Ample’, which possessed the highest sucrose content, has
been preferred as the cultivar for the fresh market [10]. In comparison to the reported
results of raspberries from Poland [14], the content of sucrose was similar, but the glucose
and fructose contents were much higher in our samples, probably due to the fact that
our samples were dried. Out of four quantified sugar alcohols, the most dominant was
glycerol, then sorbitol (Table 3). Besides sucrose, which is known as a translocation sugar,
sorbitol and mannitol have the same role. In addition, higher concentrations of stachyose,
from 1.21 g/kg (in cultivar ‘Vene’) to 13.79 mg/kg (in ‘Malling June’), and raffinose, from
5.19 g/kg (in ‘Anitra’ cultivar) to 7.29 mg/kg (in ‘Vene’), could be explained by the build-up
of sugar concentrations in the phloem by polymer trapping [42].
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Table 2. The averages of the values of the contents of fruit acids (g/kg) in 18 raspberry extract samples during the two-year collection from two Norwegian regions
(Njøs No. 1–No. 11 and NMBU No. 12–No. 18) (p ≤ 0.05).

Fruit Acid

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

‘Stiora’ ‘Varnes’ ‘Asker’ ‘Balder’ ‘Anitra’ ‘Borgund’ ‘Ninni’ ‘Agat’ ‘Veten’ ‘Preussen’ ‘Vene’ ‘Malling
June’ ‘2. Ninni’ ‘Cascade

delight’
‘Glen

Ample’ ‘2.Veten’ ‘Glen
Fyne’ ‘Ru’

Citric 24.12 31.67 24.05 30.37 32.40 23.74 25.05 26.15 25.86 33.27 24.26 21.25 26.12 30.03 28.49 26.78 25.38 27.81 3.13
Maleic 0.88 0.61 0.81 1.63 0.77 0.67 0.54 0.81 0.98 0.85 0.64 1.00 0.60 0.87 1.03 0.95 0.90 0.90 5.96
Malic 0.03 0.03 0.06 0.06 0.06 0.06 0.04 0.05 0.04 0.03 0.04 0.04 0.04 0.03 0.06 0.06 0.06 0.05 4.38

Pyruvic 0.12 0.11 0.12 0.11 0.12 0.13 0.11 0.13 0.17 0.11 0.13 0.21 0.11 1.99 0.11 0.11 0.11 0.11 5.82
Shikimic 0.06 0.06 0.03 0.05 0.06 0.08 0.06 0.06 0.07 0.05 0.07 0.06 0.06 0.06 0.05 0.05 0.06 0.06 5.40

Lactic 0.08 0.08 0.06 0.06 0.07 0.09 0.07 0.08 0.11 0.07 0.08 0.07 0.08 0.10 0.07 0.07 0.07 0.07 3.12
Propionic 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 3.02

Butyric 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.26 0.02 0.02 0.02 0.02 6.90
Quinic 0.22 0.30 0.19 0.25 0.23 0.15 0.18 0.23 0.32 0.15 0.31 0.27 0.19 0.21 0.22 0.20 0.19 0.18 3.79
Oxalic 0.16 0.12 0.20 0.22 0.22 0.20 0.17 0.20 0.19 0.16 0.19 0.20 0.20 0.15 0.21 0.20 0.20 0.19 3.64

Fumaric 0.17 0.16 0.06 0.22 0.12 0.13 0.11 0.15 0.35 0.38 0.20 0.31 0.10 0.18 0.13 0.13 0.13 0.21 5.14

Table 3. The averages of the values of sugar contents (g/kg) in 18 raspberry extract samples during the two-year collection from two Norwegian regions (Njøs No.
1–No. 11 and NMBU No. 12–No. 18) (p ≤ 0.05).

Sugar
Compound

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

‘Stiora’ ‘Varnes’ ‘Asker’ ‘Balder’ ‘Anitra’ ‘Borgund‘ ‘Ninni’ ‘Agat’ ‘Veten’ ‘Preussen’ ‘Vene’ ‘Malling
June’ ‘2. Ninni’ ‘Cascade

delight’
‘Glen

Ample’ ‘2.Veten’ ‘Glen
Fyne’ ‘Ru’

Sorbitol 0.16 2.08 3.90 7.51 4.55 6.24 1.81 5.08 5.58 11.68 4.71 10.46 2.88 4.45 4.96 5.42 4.39 6.41 6.64
Trehalose 0.32 0.32 0.11 0.41 0.58 0.15 0.40 0.33 0.49 0.46 0.32 0.41 0.35 0.33 0.34 0.30 0.27 0.36 4.73
Arabinose 0.67 1.12 0.52 0.45 0.22 0.85 0.43 0.38 0.59 0.55 0.49 0.49 0.37 0.54 0.37 0.50 0.56 0.58 9.75

Glucose 270.25 322.36 330.67 193.99 206.88 326.81 323.95 258.19 187.10 308.96 226.54 245.62 252.42 263.07 214.44 229.64 216.46 242.94 3.33
Fructose 142.04 183.25 196.03 151.90 202.49 201.09 188.91 172.05 143.35 205.80 129.23 235.68 207.67 210.15 179.43 185.55 192.48 201.87 3.31
Sucrose 27.28 11.68 19.56 10.53 19.15 3.36 13.69 10.66 7.71 0.91 0.97 8.14 20.80 26.63 53.19 42.48 51.98 47.52 5.01

Turanose 1.35 1.28 2.55 2.80 2.47 1.32 1.04 10.35 1.55 1.32 1.19 1.18 0.89 2.10 3.71 1.73 1.39 1.09 6.63
Glycerol 7.37 7.62 9.62 14.41 7.98 7.34 10.98 7.36 9.95 8.42 9.94 7.54 7.52 8.79 9.14 9.38 10.75 10.79 3.88

Galactitol 0.36 0.19 0.54 0.48 0.71 0.19 0.46 0.14 0.48 0.24 0.73 0.22 0.40 0.39 0.44 0.46 0.41 0.35 4.52
Galactose 22.00 15.07 28.59 32.10 24.18 29.12 29.98 25.33 31.31 41.00 36.98 36.70 11.88 18.50 24.16 11.35 14.31 16.34 7.15

Ribose 7.32 1.11 1.95 18.37 4.31 0.37 1.44 2.44 8.87 0.98 0.40 0.88 1.23 4.60 8.15 7.70 7.01 6.80 4.41
Isomaltose 1.55 0.61 0.64 2.42 2.50 0.57 1.73 0.58 1.60 2.45 0.34 2.20 1.47 1.29 1.47 1.49 1.32 1.79 6.48

Isomaltotriose 0.45 1.01 0.94 0.18 0.64 0.19 0.39 0.21 0.51 0.23 0.15 0.21 0.34 0.42 0.46 0.47 0.41 0.25 6.76
Maltose 3.99 4.01 1.88 2.30 1.69 2.01 1.72 1.87 1.98 3.98 4.04 3.56 1.47 2.53 1.82 1.92 1.94 2.51 4.67

Maltotriose 0.93 0.51 1.72 1.92 1.65 4.48 1.63 1.39 1.72 3.54 1.04 3.17 1.39 1.78 1.58 2.42 2.43 2.92 4.93
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Table 3. Cont.

Sugar
Compound

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

‘Stiora’ ‘Varnes’ ‘Asker’ ‘Balder’ ‘Anitra’ ‘Borgund‘ ‘Ninni’ ‘Agat’ ‘Veten’ ‘Preussen’ ‘Vene’ ‘Malling
June’ ‘2. Ninni’ ‘Cascade

delight’
‘Glen

Ample’ ‘2.Veten’ ‘Glen
Fyne’ ‘Ru’

Mannitol 3.05 3.15 5.33 5.97 3.63 3.04 5.37 3.43 4.71 3.49 4.11 3.12 4.56 3.88 4.32 4.33 4.82 4.47 3.48
Xylose 0.32 0.43 0.45 0.39 0.13 0.45 0.54 0.23 0.30 0.55 0.28 0.49 0.47 0.35 0.28 0.34 0.45 0.48 7.12

Melibiose 9.53 9.23 10.00 9.59 9.43 8.70 8.71 10.30 9.39 8.99 10.03 8.04 7.38 9.02 9.23 9.16 9.08 9.02 2.35
Panose 3.47 3.37 3.52 3.37 3.31 3.19 3.18 3.62 4.20 3.27 3.87 2.93 2.70 3.28 3.25 3.25 3.26 3.26 2.69

Rhamnose 1.02 0.98 0.99 0.94 0.91 0.92 0.92 1.02 1.12 0.94 1.04 0.84 0.79 0.92 0.91 0.92 0.93 0.94 2.50
Raffinose 6.60 6.38 5.46 5.29 5.19 6.00 6.03 5.75 7.23 6.20 6.66 5.55 5.11 5.73 5.09 5.34 5.62 5.91 2.41
Stachyose 7.74 7.57 7.29 7.95 8.55 9.85 8.09 8.53 8.12 13.56 13.79 1.21 2.61 3.70 3.12 3.23 3.34 3.47 6.58
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The sum of sugars was similar to the reported data in another study [38]. Contrary to
the published results in [43], in which samples were frozen after harvesting, the sum of
total sugars was much higher for our raspberries samples, which were air-dried.

3.4. Determination of Total Phenolic Content (TPC) and Relative Scavenging Activity (RSA)

The averages of the TPC and RSA values obtained from the two-year study are pre-
sented in Table 4. The average TPC values for raspberries ranged from 7.59 g/kg (for
‘Cascade delight’, NMBU) to 27.21 g/kg (for ‘Preussen’, Njøs), and the average RSA values
ranged from 70.45 (‘Cascade delight’, NMBU) to 218.68 mmol/kg (for ‘Preussen’, Njøs). Ob-
serving the obtained average values for raspberries from two different Norwegian regions
(Table 4, Figure A1), slightly higher TPC and RSA values were obtained for Njøs. The TPC
results were of the same order of magnitude as in other studies, which analyzed different
raspberry varieties [37,44–47] or raspberries from a different region [48]. Furthermore, a
group of authors [45] reported similar levels of TPC, as well as antioxidant capacities, for
raspberries and wild berries (blackberries and blueberries), although they showed different
contents of anthocyanins.

Correlation between the averages of TPC and RSA values in the two-year study
showed a high Pearson’s coefficient (0.90, p < 0.5). Furthermore, high correlations between
these values in each harvesting region (Table A1) were also noted. Moreover, other au-
thors [38,44,49] also showed a good correlation between TPC and antioxidant capacity.
Authors from Spain [37] who compared TPC and antioxidant activity for fresh raspberry
extracts showed a slightly weaker correlation (a value of 0.64), as well as lower values for
the DPPH assay (mmol TE/kg of fresh weight). However, the contents of some phenolic
compounds (Table 4) were not much different from theirs. In comparison to the results
of raspberry leaf extracts [50], the antioxidant activity of raspberry fruit extract (Table 4)
was lower. Otherwise, the values obtained for TPC (Table 4) were higher than the results
published by Brazilian authors [38]. Furthermore, based on their results, raspberries were
recognized as a good source of antioxidants that showed similar activity to blackberries.

The obtained results of TPC and antioxidant capacity are generally in agreement
with the published data. These results of high TPC values and antioxidant capacity, as
well as the good correlation between these parameters, could suggest the high ability of
raspberries to exert health effects. A recognized correlation between antioxidant parameters
for raspberries was also noted for different regions over several seasons [51].

3.5. Determination of Polyphenols

The average values of phenolic content are presented in Table 5. The most dominant
content was found for ellagic acid. The ellagic acid content was from 40.64 mg/kg (in
cultivar ‘Varnes’) to 225.25 mg/kg (in ‘Glen Fyne’). Contrary to the ellagic acid content, the
highest contents of many other phenolic compounds, such as chlorogenic acid, caffeic acid,
aesculetin, rutin, and quercetin 3-O-glucoside, were found in the cultivar ‘Varnes’ (Table 5).
Furthermore, it is well known that raspberry fruits contain large amounts of ellagic acid,
which has been confirmed in many studies [35,37,45,49,51,52]. A group of authors [53] who
analyzed 11 raspberry cultivars from Poland reported a higher content for ellagic acid. It
should be noted that, contrary to air-dried samples in the present study, the samples from
Poland were freeze-dried.
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Table 4. The averages of the values of TPC (g GAE/kg) and RSA (mmol TE/kg) in 18 raspberry extract samples during the two-year collection from two Norwegian
regions (Njøs No. 1–No. 11 and NMBU No. 12–No. 18) (p ≤ 0.05).

Parameter

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

‘Stiora’ ‘Varnes’ ‘Asker’ ‘Balder’ ‘Anitra’ ‘Borgund’ ‘Ninni’ ‘Agat’ ‘Veten’ ‘Preussen’ ‘Vene‘ ‘Malling
June’ ‘2. Ninni‘ ‘Cascade

delight’
‘Glen

Ample’ ‘2.Veten’ ‘Glen
Fyne‘ ‘Ru‘

TPC 18.05 10.05 11.79 22.00 12.09 12.42 12.53 9.90 22.72 27.21 25.69 12.42 11.57 7.59 12.21 12.54 15.02 8.08 7.16
RSA 158.55 113.64 138.53 162.15 149.99 104.94 124.02 123.52 182.75 218.68 191.71 100.53 89.78 70.45 91.00 124.42 152.45 85.13 4.21

Table 5. The averages of the values of contents of polyphenols (mg/kg) in 18 raspberry extract samples during the two-year collection from two Norwegian regions
(Njøs No. 1–No. 11 and NMBU No. 12–No. 18) (p ≤ 0.05).

Phenolic
Compound

Njøs (No. 1–No. 11) NMBU (No. 12–No. 18)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CV
(%)

‘Stiora‘ ‘Varnes‘ ‘Asker‘ ‘Balder‘ ‘Anitra‘ ‘Borgund‘ ‘Ninni‘ ‘Agat‘ ‘Veten‘ ‘Preussen‘ ‘Vene‘ ‘Malling
June‘ ‘2. Ninni‘ ‘Cascade

delight‘
‘Glen

Ample‘ ‘2.Veten‘ ‘Glen
Fyne‘ ‘Ru‘

Protocatechuic
acid 6.47 5.37 5.15 11.51 6.75 4.10 9.89 5.19 13.03 2.97 3.49 41.63 33.95 26.78 38.83 48.50 45.44 26.41 4.68

Syringic acid 53.88 44.70 58.57 54.24 33.19 29.02 53.67 63.28 53.16 52.85 44.93 87.90 67.88 52.33 88.51 77.11 64.11 66.32 5.12
Chlorogenic acid 2.67 110.77 6.48 2.51 4.03 4.09 5.52 3.99 3.07 1.21 1.82 3.40 3.79 1.99 3.56 2.90 3.20 2.80 7.91

Caffeic acid 6.30 14.48 9.41 8.69 8.57 4.47 5.80 3.33 14.13 4.89 2.32 6.25 7.58 5.32 5.67 12.53 13.54 7.25 5.34
Aesculetin 5.90 10.47 6.87 6.59 7.03 2.74 4.10 2.57 10.83 7.46 6.86 2.70 3.29 2.99 3.36 5.59 6.13 3.80 8.07

Rutin 28.78 88.57 18.03 7.26 17.99 24.79 24.22 21.81 36.67 18.94 26.68 7.28 16.60 14.97 11.91 20.98 23.54 14.47 3.40
p-Coumaric acid 5.76 4.97 2.45 6.33 4.62 6.14 4.41 5.35 9.18 2.62 3.14 18.99 7.62 7.92 6.87 10.00 10.09 7.12 3.48

Quercetin
3-O-glucoside 10.21 20.22 5.85 16.38 5.41 10.17 10.13 5.49 14.84 10.60 5.58 4.97 6.38 4.15 7.72 6.56 6.58 4.91 9.52

Ellagic acid 177.64 40.64 134.72 160.98 161.13 107.00 108.47 127.30 207.21 128.49 131.81 208.50 205.58 62.19 144.10 135.44 225.25 93.17 3.41
Kaempferol

3-O-glucoside 2.02 1.80 1.61 2.65 1.01 1.80 1.44 1.18 3.10 1.60 0.36 1.48 1.41 1.05 2.81 1.92 2.05 1.41 7.38

Quercetin
3-O-rhamnoside 0.67 0.85 0.60 0.87 0.56 0.51 0.62 0.77 0.94 0.45 0.29 1.76 1.59 0.78 1.14 1.89 1.89 1.07 5.50

Phlorizin 0.71 0.76 1.36 2.64 1.49 1.05 0.88 0.81 1.38 1.75 1.68 1.09 0.79 0.70 0.56 0.79 1.46 0.67 8.10
Eriodyctiol 0.83 0.60 1.25 0.99 0.64 0.68 0.55 0.43 1.32 0.61 0.96 0.72 0.66 0.43 0.57 0.83 0.87 0.46 5.67
Quercetin 37.30 8.47 18.40 57.38 20.89 23.37 22.12 13.75 57.47 18.70 5.51 29.36 33.40 12.28 33.55 27.88 33.03 9.65 6.74

Naringenin 0.42 0.35 0.52 0.45 0.38 0.24 0.46 0.30 0.54 0.59 0.24 0.40 0.36 0.30 0.23 0.33 0.43 0.20 5.47
Kaempferol 4.20 1.26 2.65 3.43 2.45 1.84 2.48 1.31 3.05 2.66 3.40 1.48 2.37 1.34 2.55 1.63 2.66 1.18 6.01

Naringin 1.70 0.69 1.64 1.43 2.26 1.22 1.28 0.96 1.89 0.56 0.86 1.79 1.07 2.16 1.46 2.53 2.44 2.42 9.07
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Among other phenolic compounds, high contents of quercetin and rutin (5.51–57.47 mg/kg
and 7.26–88.57 mg/kg, respectively) were also found (Table 5). Besides quercetin, the
contents of quercetin glycosides were similar to the values reported by other authors [10]
who also analyzed Norwegian raspberries. They also reported the highest contents of
anthocyanins and other phenolics in the cultivar ‘Veten’ [10]. Further, this cultivar has been
preferred as the cultivar for processing in Norway [10]. In line with this, ‘Veten’ analyzed
in this study also had high contents of many polyphenols (Table 5).

Quantified values of quercetin 3-O-glucoside were also comparable to those published
by other authors [44]. This group of authors showed a significant contribution of the
location (latitude, longitude, and elevation) to the content of quercetin 3-O-glucoside.
Moreover, the results presented in this study show differences in the average values of
quercetin 3-O-glucoside between the two regions Njøs and NMBU (Table 5).

The obtained values of caffeic acid and chlorogenic acid (Table 5) showed similar
results compared to those obtained from conventionally grown raspberries in Portugal, in
which the amounts were low relative to other polyphenols [54]. In addition, the contents
of hydroxycinnamic acids, such as chlorogenic acid, caffeic acid, and p-coumaric acid,
as well as the content of kaempferol, were similar to the published results for Serbian
raspberries [47]. Furthermore, the content of caffeic acid in raspberry fruit extracts (Table 5)
was similar to that of raspberry leaf extracts [50].

Syringic acid content was found be relatively dominant in all analyzed raspberry sam-
ples (from 29.02 to 88.51 mg/kg), which is contrary to the results of other authors [45], who
did not detect this acid in raspberries. Furthermore, they also did not find p-coumaric acid
or kaempferol in raspberry extracts. In contrast, the contents of other phenolic compounds,
such as protocatechuic acid, caffeic acid, and quercetin, can be noted to be similar to the
results in this study. In addition to the recognized correlation between some phenolic
compounds, as well as between polyphenols and antioxidant activity for raspberries [37],
some similarities can also be noted in this study.

Based on the literature data, many studies have emphasized the anthocyanin content
as the main contribution to the antioxidant capacity [52] and health properties of rasp-
berries [48,55], which was different between cultivars [54,56]. In addition, ellagic acid
derivatives were noted as dominant in raspberries [51,52], as well as in their products [56].
However, the contents of other polyphenols that are presented in this study (Table 5) are
also important. Therefore, the contribution of analyzed polyphenols is significant for
antioxidant activity, as well as the high potential of these fruits for their health properties.

Regarding the phytochemical content of these 18 raspberry cultivars, some observa-
tions can be highlighted. ‘Glen Ample’, which is the preferred cultivar for the fresh mar-
ket [10], appears to have predominant sucrose and syringic acid contents (Tables 3 and 5).
‘Preussen’ is distinguished by the highest P, sorbitol, galactose, and citric acid contents and
RSA and TPC values and the lowest Na and sucrose contents. ‘Cascade de light‘ showed
the lowest TPC and RSA values, as well as the lowest sum of phenolic contents (Tables 1–5).
In ‘Veten’, which is the preferred cultivar for jam production, was found to have high
phenolic content, the lowest glucose content, the lowest sum of all sugar contents (from
Njøs), and the highest Na content (Tables 1, 3 and 5).

3.6. Statistical Analysis

A more noticeable difference in the mineral content between the raspberry samples
from the two regions can be seen in Figure A2 when statistical analysis is applied. Sta-
tistically significant correlations (p ≤ 0.05) were found in mineral contents between the
samples. The circle’s color is defined by the correlation coefficient value, while the circle’s
size is defined by the p-value of the correlation. The highest positive correlations were
found between Zn and S contents (r = 0.692), Al and P contents (r = 0.745), and B and N
contents (r = 0.635). The content of Cu was positively correlated with P, S, and Zn contents
(r = 0.659; r = 0.623; and r = 0.612, respectively), while the content of Mg was positively
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correlated with P and S contents (r = 0.610 and r = 0.599). There were weaker positive
correlations between B and Mn; Ca and S; K and P; and Mn and N contents (Figure A2).
Different results were obtained for black and red currants, where Mg was correlated with
Ca, Mn was correlated with Mg, and Fa was correlated with Al [57]. Correlations between
different traits indicate whether the selection of one property has an effect on another. As a
matter of fact, strong correlations between two positive or two negative traits can accelerate
and facilitate breeding programs [58].

The PCA of the mineral contents in samples (Figure 2) revealed that the first three
principal components explained 66.64% of the total variance in the 13 parameters (Al, B,
Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn, and N). According to the results of the PCA, the
contents of: Al (which contributed 10.0% of the total variance, based on correlations), Cu
(14.1%), Mg (11.3%), Na (13.9%), P (16.0%), S (12.0%), and Zn (9.7%) exhibited a negative
influence on the first principal component (PC1), while the contents of B (29.4% of the total
variance, based on correlations), Mn (22.5%), S (7.4%), and N (30.6%) exerted a negative
effect according to the second principal component (PC2). On the other hand, the contents
of Ca (39.1%) and Fe (7.3%) showed a positive influence on the third principal component
(PC3) calculation, while the contents of Al (11.1%), K (11.4%), and P (7.1%) exerted a
negative influence on PC3 (Figure 2). The samples obtained from Njøs and NMBU were
mostly different in their contents of B, N, Mn, and Fe. Statistical analysis revealed evident
differences between these two regions, most likely due to the different cultivars tested. As
higher contents of macronutrients were already noted in samples from Njøs (Table 1), PCA
confirmed these findings (Figure 2).

In the study of Karlsons et al. [59], grown cranberry fruits were associated with K, P,
Mo, and Fe, while wild fruits were correlated with B, S, Ca, Cu, Mn, and Mg. Cultivated
blueberries were associated with Fe, S, B, and Mo, and wild ones were correlated with P, K,
Zn, Ca, Cu, Mg, and Mn, which all show that the storage of minerals is genotype-dependent.

The highest positive correlations between organic acid contents (Figure A3) were found
between oxalic and malic acid contents (r = 0.783), propionic and shikimic acid contents
(r = 0.683), butyric and pyruvic (r = 0.997), shikimic and lactic (r = 0.670), and propionic
and lactic (r = 0.808). In contrast, Dincheva et al. [60] found a strong positive correlation
between citric acid and malic acid in the ripening raspberry cultivar ‘Rubin’. In blueberries,
Wang et al. [61] found that quinic acid content was significantly and positively correlated
with shikimic and citric acids, while quinic acid was dependent on citric acid content.

The PCA of the organic acid content in the studied samples (Figure 3) revealed that the
first three principal components explained 70.55% of the total variance in the 11 parameters
(citric, maleic, malic, pyruvic, shikimic, lactic, propionic, butyric, quinic, oxalic, and fu-
maric). The content of propionic (9.4% of the total variance, based on correlations) and
lactic (16.8%) positively influenced the PC1 calculation, while the content of malic (14.5%)
and oxalic (12.9%) negatively affected the PC1 calculation. The contents of organic acids,
such as citric (10.3% of the total variance, based on correlations), butyric (26.6%), and
pyruvic (24.1%), positively influenced the PC2 coordinate, while the contents of quinic
(14.6%), fumaric (8.2%), and shikimic (11.8%) negatively influenced the PC2 coordinate
(Figure 3). The contents of organic acids, such as maleic (39.4% of the total variance, based
on correlations), citric (17.0%), quinic (7.1%), and fumaric (28.5%), positively affected the
PC3 calculation (Figure 3).



Horticulturae 2022, 8, 765 14 of 25Horticulturae 2022, 8, x FOR PEER REVIEW 17 of 30 
 

 

 

Figure 2. PCA ordination of element content variables: (a) projection in PC1-PC2 plane; (b) 

projection in PC1-PC3 plane. 

The highest positive correlations between organic acid contents (Figure A3) were 

found between oxalic and malic acid contents (r = 0.783), propionic and shikimic acid 

contents (r = 0.683), butyric and pyruvic (r = 0.997), shikimic and lactic (r = 0.670), and 

propionic and lactic (r = 0.808). In contrast, Dincheva et al. [60] found a strong positive 

correlation between citric acid and malic acid in the ripening raspberry cultivar ‘Rubin’. 

In blueberries, Wang et al. [61] found that quinic acid content was significantly and 

positively correlated with shikimic and citric acids, while quinic acid was dependent on 

citric acid content. 

The PCA of the organic acid content in the studied samples (Figure 3) revealed that 

the first three principal components explained 70.55% of the total variance in the 11 

parameters (citric, maleic, malic, pyruvic, shikimic, lactic, propionic, butyric, quinic, 
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The highest positive correlations between sugar contents (Figure A4) were found
between ribose and glycerol (r = 0.703), mannitol and glycerol (r = 0.856), trehalose and
isomaltose (r = 0.743), sorbitol and maltotriose (r = 0.706), stachyose and galactose (r = 0.621),
rhamnose and panose (0.970), melibiose and panose (0.769), and melibiose and rhamnose
(r = 0.771), while the highest negative correlations were found between ribose and glucose
(−0.650), galactose and sucrose (r = −0.692), melibiose and fructose (r = −0.630), panose
and fructose (r = −0.756), rhamnose and fructose (r = −0.754), and stachyose and sucrose
(r = −0.684) (Figure A4).
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Strong positive correlations between sucrose and fructose (r = 0.941) and sucrose
and glucose (r = 0.991) were found in ‘Rubin’ raspberry [60]. Similarly, Zhang et al. [62]
found that glucose content was correlated with fructose content and sucrose was correlated
with both glucose and fructose contents in blueberry cultivars grown in China. This is
probably due to the fact that glucose and fructose can easily replace each other during
metabolism [63] and due to the evidence that, during the final fruit ripening, invertase
activity is strong, so the levels of glucose and fructose should be high and pretty much the
same [64].

The PCA of the sugar content in samples (Figure 4) showed that the first three prin-
cipal components explained 59.92% of the total variance in the 22 parameters (sorbitol,
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trehalose, arabinose, glucose, fructose, sucrose, turanose, glycerol, galactitol, galactose,
ribose, isomaltose, isomaltotriose, maltose, maltotriose, mannitol, xylose, melibiose, panose,
rhamnose, raffinose, and stachyose). According to the results of the PCA, the content of
fructose (which contributed 14.3% of the total variance, based on correlations) showed a
positive influence on PC1, while the contents of rhamnose (16.1%), panose (16.4%), and
melibiose (12.6%) exerted a negative effect on the PC1 coordinate. On the other hand, the
contents of maltose (7.5%), arabinose (10.9%), and glucose (13.4%) positively influenced
the calculation of PC2, whereas the contents of galactitol (7.8%), glycerol (8.6%), ribose
(12.9%), and mannitol (10.2%) negatively influenced the computation of the PC2 coordinate
(Figure 4). From the results of the applied statistical analysis, the samples from Njøs and
NMBU were mostly different in the contents of raffinose, stachyose, rhamnose, panose,
melibiose, isomaltose, and sucrose.

In addition to the mentioned correlations between phenolic compounds in rasp-
berries in the literature [37], statistical analysis applied to the results of polyphenols
in this study (Figure A5) revealed apparent correlations between phenolic compounds.
The highest positive correlations were found between protocatechuic and syringic acids
(r = 0.771), quercetin 3-O-rhamnoside and syringic acid (r = 0.721), chlorogenic acid and
rutin (r = 0.910), quercetin 3-O-rhamnoside and p-coumaric acid (r = 0.771), protocatechuic
and p-coumaric acids (r = 0.729), quercetin and kaempferol 3-O-glucoside (r = 0.808), and
protocatechuic acid and quercetin 3-O-rhamnoside (r = 0.921) (Figure A5).

A long time ago, Howard et al. [65] proved that the antioxidant activity of various
blueberries involved correlations between total polyphenols, total anthocyanins, total
flavonols, total hydroxycinnamic acids, and antioxidant activity. Based on the results
of Scalzo et al. [66], total malvidin was significantly and positively correlated with total
anthocyanins, and chlorogenic acid was correlated with anthocyanins in blueberry culti-
vars grown in New Zealand. Correspondingly, according to Pliszka [67], the contents of
total anthocyanins, flavonols, and phenolic acids were mutually positively correlated in
elderberry fruits.

The PCA of the phenolic content in the studied samples (Figure 5) indicated that
the first three principal components explained 74.0% of the total variance in the 17 pa-
rameters (protocatechuic acid, syringic acid, chlorogenic acid, caffeic acid, aesculetin,
rutin, p-coumaric acid, quercetin 3-O-glucoside, ellagic acid, kaempferol 3-O-glucoside,
quercetin 3-O-rhamnoside, phlorizin, eriodictyol, quercetin, naringenin, kaempferol, and
naringin). The contents of syringic acid (11.6% of the total variance, according to correla-
tions), protocatechuic acid (15.3%), p-coumaric acid (10.7%), naringin (7.2%), and quercetin
3-O-rhamnoside (11–8%) exhibited a positive influence on the PC1 coordinate, while a
negative influence on the PC1 coordinate was observed for the contents of chlorogenic acid
(5.7%), rutin (8.5%), quercetin 3-O-glucoside (9.1%), and aesculetin (9.0%) (Figure 5). In
the study of Fotirić Akšić et al. [68], syringic acid and naringenin were the most important
factors for separating blueberry cultivars, while the presence of p-coumaric acid separated
raspberry cultivars in PCA analysis.

The contents of aesculetin (6.7%), phlorizin (5.3%), kaempferol (6.8%), naringenin
(9.0 %), eriodictyol (12.9%), caffeic acid (9.1%), kaempferol 3-O-glucoside (12.3%), quercetin
(16.6%), and ellagic acid (10.2%) showed a negative influence on PC2 coordinate com-
putation (Figure 5). The contents of phlorizin (7.6%) and kaempferol (11.1%) showed a
positive influence on the PC3 coordinate calculation, whereas the contents of rutin (16.2%),
chlorogenic acid (20.5%), caffeic acid (14.0%), and quercetin 3-O-rhamnoside (6.7%) showed
a negative influence on the PC3 calculation (Figure 5). According to the statistical re-
sults, the samples obtained from Njøs and NMBU were mostly different in the contents of
chlorogenic acid, rutin, syringic acid, protocatechuic acid, p-coumaric acid, naringin, and
quercetin 3-O-rhamnoside.
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From the results of the applied statistical analysis, the samples from Njøs and NMBU
were mostly different in the contents of macronutrients, the contents of raffinose, stachyose,
rhamnose, panose, melibiose, isomaltose, and sucrose, and the contents of chlorogenic
acid, rutin, syringic acid, protocatechuic acid, p-coumaric acid, naringin, and quercetin
3-O-rhamnoside. Furthermore, based on the PCA, ‘Preussen’ was separated from other
samples by element contents (Figure 2), ‘Veten’ and ‘Cascade de light’ were separated by
organic acids (Figure 3), and ‘Varnes’ was separated by phenolic compounds and element
contents (Figures 1 and 5). These observations are consistent with those obtained by
chemical analysis.
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A more detailed presentation of the global conclusion resulting from the PCA analysis
of chemical element and compound contents is presented in Figure 6. Samples from the
NMBU region are richer in fructose, sucrose, and syringic acid contents, while samples from
the Njøs region are richer in K and P contents, as well as galactose content. Augmented
values of TPC and RSA were observed in samples from the Njøs region.
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4. Conclusions

In the present study, different raspberry cultivars had similar profiles of antioxidant
activity, minerals, sugars, organic acids, and polyphenols, with quantitative variations
between them. The samples obtained from Njøs and NMBU were mostly different in P, N,
Zn, and Fe contents. Moreover, raspberry samples from Njøs had higher macronutrient con-
tents compared to NMBU samples. The samples also differed in sugar contents (raffinose,
stachyose, rhamnose, panose, melibiose, isomaltose, and sucrose) and in phenolics (chloro-
genic acid, rutin, syringic acid, protocatechuic acid, p-coumaric, naringin, and quercetin
3-O-rhamnoside contents). It is important to mention that the various extraction methods
of raspberry samples noted in the literature data caused different results of the analyzed
parameters. Furthermore, the phytochemical composition of fruits in studied raspberry
cultivars was dependent on the agricultural practice, as well as the growing location.
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Based on the obtained results for Norwegian raspberries, minerals P and K, ellagic
acid, quercetin, and derivatives, with pronounced antioxidant capacity of sample extracts,
were characteristics for all 18 raspberry cultivars. The analyzed raspberries possessed
high contents of sugars, with especially high contents of galactose, stachyose, and sugar
alcohols glycerol and sorbitol, as well as citric acid as the dominant organic acid. Moreover,
based on the obtained results, raspberries are recognized as a good source of nutrients and
phytochemicals, which, overall, increase the health properties of these fruits.

Soil chemical properties, climatic conditions, agronomic practice, genetics, and physi-
ology could affect the chemical components of raspberry fruits, which must be studied in
more detail. Furthermore, these findings can be used as a reference for selecting the right
raspberry cultivar for each location.
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Appendix A. Additional Figures

Additional Figure captions: Figure A1. The averages of the values of TPC and RSA
obtained for 18 raspberry varieties during the two-year collection; Figure A2. Color
correlation graph between metal contents in raspberry extract samples; Figure A3. Color
correlation graph between fruit acid contents in raspberry extract samples; Figure A4. Color
correlation graph between sugar contents in raspberry extract samples; Figure A5. Color
correlation graph between phenolic contents in raspberry extract samples.
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Additional Table caption: Table A1. Correlation between the average values of TPC
(g GAE/kg) and RSA (mmol TE/kg) in 18 raspberry extract samples during the two-year
collection from two Norwegian regions.

Table A1. Correlation between the average values of TPC (g GAE/kg) and RSA (mmol TE/kg) in
18 raspberry extract samples during the two-year collection from two Norwegian regions. (p < 0.05).
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fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. LWT-Food Sci. Technol. 2020,
130, 109627. [CrossRef]

19. Bensalem, J.; Dal-Pan, A.; Gillard, E.; Calon, F.; Pallet, V. Protective effects of berry polyphenols against age-related cognitive
impairment. Nutr. Aging. 2015, 3, 89–106. [CrossRef]

20. Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018, 58,
2491–2507. [CrossRef]

http://doi.org/10.1007/978-3-319-76020-9
http://www.fao.org/faostat/en/#data/QC
https://www.statista.com/statistics/644467/annual-production-volume-of-raspberries-in-norway/
https://www.statista.com/statistics/644467/annual-production-volume-of-raspberries-in-norway/
http://doi.org/10.2298/GENSR0903255N
http://doi.org/10.1016/j.foodchem.2006.06.021
http://doi.org/10.1002/jsfa.9213
http://www.ncbi.nlm.nih.gov/pubmed/29936700
http://doi.org/10.1051/fruits/2013068
http://doi.org/10.1007/s11130-008-0097-5
http://doi.org/10.1016/j.foodchem.2014.02.174
http://doi.org/10.1080/10942912.2021.1908352
http://doi.org/10.1016/j.scienta.2016.09.047
http://doi.org/10.17221/9/2018-HORTSCI
http://doi.org/10.1016/j.jfca.2020.103429
http://doi.org/10.1039/D0RA10373J
http://www.ncbi.nlm.nih.gov/pubmed/35423599
http://doi.org/10.1016/j.jsps.2021.09.014
http://www.ncbi.nlm.nih.gov/pubmed/34819792
http://doi.org/10.1016/j.lwt.2020.109627
http://doi.org/10.3233/NUA-150051
http://doi.org/10.1080/10408398.2017.1329198


Horticulturae 2022, 8, 765 24 of 25
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