

Molecular and bioochemical characterization of five Actinobacteria strains isolated from hydrocarboncontaminated soil samples

¹ Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11158 Belgrade, P. O. Box 51, Serbia ² IChTM- Department of Chemistry, University of Belgrade, Njegoševa 12, 11158 Belgrade, P. O. Box 473, Serbia *For correspondence: marijaljesevic@gmail.com

Introduction

Hydrocarbon contaminated soil has a great number of substrates suitable for the growth of complex microbial community. Microbial strains isolated from contaminated environment have attracted much attention not only as a rich source of novel pathways and metabolites, but also as potential bioremediation agents. In selection and evaluation of environmental isolates for future implementation the different methods have been employed.

In the present study chemotaxonomic and biochemical methods were used in order to compare five Gram positive bacterial strains labeled as RNP05, CHP-ZH25, CHP-NR31, CHP-315 and NS094. The strains were isolated from contaminated soil samples taken near oil refineries in Pancevo and Novi Sad, Serbia [1,2].

Results

The strains RNP05 and CHP-NR31 were identified as members of Rhodococcus genus, while strains CHP-ZH25, CHP-315 and NS094 represent Oerskovia, Gordonia and Micromonospora spp. respectively. Rhodococcus sp. CHP-NR31 (GenBank JX965395) is rich in palmitic, myristil, oleic and tuberculostearic acid. It has highest tolerance to nickel (Ni²⁺) and tested positive for esterase C4, esterase lipase C8, lipase C14, leucine and cysteine arylamidase, acid phosphatase, α -glucosidase, α -galactosidase and β galactosidase. Rhodococcus sp. RNP05 (GenBank JQ065876) contains more than 30% of 17-methyiloctadecanoic acid. It has the highest tolerance to zinc (Zn²⁺) and tested positive for alkaline and acid phosphatase, esterase C4, esterase lipase C8, leucine, valine and cysteine arylamidase, trypsine, α chymotrypsine, naphtol-AS-BI-phosphohydrolase, α -glucosidase, β glucosidase and N-acetyl-β-glucosaminidase. *Oerskovia sp.* CHP-ZH25 (GenBank JX430000) has the high amount of branched chain fatty acids (12methyltetradecanoic, 12-methyltetradecanoic and 15-methylhexadecanoic acid). It has the highest tolerance to nickel (Ni²⁺). *Micromonospora sp.* NS094 (GenBank JF826530) is rich in palmytic, octadecenoic and 13methyltetradecanoic acid. It has the highest tolerance to chrome (Cr³⁺) and nickel (Ni²⁺). It has tested positive for esterase lipase C8, leucine and valine arylamidase, and β-galactosidase. *Gordonia sp.* CHP-315 (GenBank JX429999) is rich in 14-methylpentadecanoic, 10-methyloctadecanoic and octadecenoic acid. It has the highest tolerance to copper (Cu²⁺) and positive reactions for alkaline and acid phosphatase, esterase C4, esterase lipase C8, lipase C14, leucine and valine arylamidase and α -glucosidase. All the strains were capable of using phenol, 4-hidroxybenzoic acid, diesel fuel and motor oil as a sole source of carbon. *Rhodococcus sp.* RNP05 could use 3,4-hydroxybenzoic acid. Phenanthrene was used by all the strains except Gordonia sp. CHP-315 and sodium benzoate by *Rhodococcus sp.* CHP-NR31, *Rhodococcus sp.* RNP05 and *Micromonospora sp.* NS094. The detailed results are shown in Tables 1-4.

Material and methods

The bacterial strains were identified by 16S rRNA gene sequencing. Composition of fatty acids was determined by GC/MS after derivatization in methanol : toluene : sulphuric acid mixture. Utilization of different carbon sources (phenanthrene, phenol, 4-hydroxybenzoic acid, 3,4-hydroxybenzoic acid, sodium benzoate, diesel fuel, motor oil) was examined on mineral medium. Tolerance to heavy metals was studied on Mueller-Hinton agar with increasing concentrations of $CuSO_4x5H_2O$, $Cd(CH_3COO)_2$, $NiCl_2$, Zn(CH₃COO)₂ and K₂Cr₂O₇. Specific enzyme activities were detected using API ZYM test.

Table 1. Tolerance to metal ions, minimum inhibitory concentration MIC (mmol/L)

		Cadmium	Nickel, Copper,		Zinc,	Chromium,	Chromium,							
	Strain	Cd(CH ₃ COO)	2 NiCl ₂	CuSO ₄ x5H ₂ O	Zn(CH ₃ COO) ₂	K ₂ Cr ₂ O ₇	Pb	Fe						
Rhodoc	occus sp. RNP	05 50	25	10	>50	50	>50	50						
Micromor	nospora sp. NS	5094 1	2.5	1	/	2.5	/	/						
Oerskov	via sp. CHP-ZH	25 2.5	50	10	10	10	/	/						
Rhodococ	cus sp. CHP-N	IR31 <1	>50	5	2.5 2.5		/	/						
Gordoi	nia sp. CHP-31	5 10	10	25	10	2.5	/							
	,		R JE		N X			L)						
Table 3. Cellular fatty acid composition of isolated strains, % of total detected														
		the second se	4.1	1.76	9 /	7.11		U						
Fatty acid	CHP-NR31	CHP-ZH25	CHP-3	15	RNP05	NSO	94							
i12:0	nd	nd	nd		nd		0.55							
12:0	0.74	0.07	0.09)	nd	0.4		_						
i13:0	nd	nd	nd		nd	5.7		_						
ai13:0	nd	nd	nd		nd	2.15		_						
13:0	0.21	0.30	0.04		nd	nd								
i14:0	nd	nd	nd		nd		1.82							
14:0	9.93	13.31	0.19)	5.8	2.63								
i 15:0	nd	19.20	nd		nd	11.79								
ai 15:0	1.98	34.43	nd		nd	4.44								
15:0	4.79	5.03	1.80)	6.53	0.84		ß						
i 16:0	0.05	9.69	46.6	8	nd	5.62								
16:1	0.04	0.13	0.51	-	1.96	1.54								
16:0	57.72	0.18	nd		44.08	28.07								
i 17:0	0.07	16.19	nd		3.33	8.51								
ai17:0	nd	nd	nd		nd	6.83								
cy 17:0	0.01	nd	0.04		nd	nd								
17:0	1.68	0.34	4.67	,	1.22	1.77								
i18:0	nd	nd	nd		2.58		nd							
18:1	11.19	nd	3.32	2	3.66	13.14								
18:1	0.33	nd	10.8	8	nd	nd								
18:0	1.92	1.14	3.61		0.70	3.97								
i19:0	nd	nd	nd		30.15	nd								
cy 19:0	nd	nd	0.07	,	nd	nd								
19:0	9.34	nd	27.9	1	nd	nd								
20:0	nd	nd	0.20)	nd	nd								
1 4 1														

Strain	Phenol	Phenanthrene	3,4-hydroxybenzoic acid	Sodium benzoate	Motor oil	Diesel fuel	4-hydroxybenzoic acid					
Oerskovia sp. CHP-ZH25	+	+	-	-	+	+	+					
Aicromonospora sp. NS094	/	+	/	+	/	+	/					

Table 2. Microbial growth on diesel fuel and different aromatic compounds as the sole C

source

Rhodococcus sp. RNP05 Gordonia sp. CHP-315 + + -Rhodococcus sp. CHP-NR31 + ++ + Table 4. Api Zym Reaction Reaction CHP-315 RNP05 NS094 CHP-NR31 CHP-315 RNP05 NS094 CHP-NR31 Alkaline + -Naphtol-AS-BIphosphatase + phosphohydrolase -/+ + α-galactosidase **Esterase C4** + -+ + **Esterase lipase C8 β-galactosidase** + --+ Lipase C14 **β**-glucuronidase + -+ + Leucine arylamidase **α-glucosidase** + + + + _ Valine arylamidase **β-glucosidase** + -+

Conclusion

+

-

-

+

-

-

-

N-acetyl-β-

glucosaminidase

 α -mannosidase

 α -fucosidase

+

-

-

On the basis hydrocarbon utilization and metal tolerance tests the studied Rhodococcus strains have the highest biodegradation potential. The cellular fatty acid profiles of all tested strains are in accordance with data previously reported in the literature.

Acknowledgement

References

1. G.D. Gojgic-Cvijovic et al., (2012) Biodegradation of petroleum sludge and petroleum

Serbian Ministry of Education, Science and Technological Development (Project

Cysteine

arylamidase

Trypsine

α-chymotrypsine

Acid phosphatase

_

_

+