Cu(II), Mn(II) and Zn(II) complexes of hydrazones with quaternary ammonium moiety: Synthesis, characterization and DFT calculation Nevena Stevanović^a, Matija Zlatar^b, Mima Jevtović^c, Maja Gruden^a, Maja Šumar^a, Katarina Anđelković^a, Božidar Čobeljić^a ^aUniversity of Belgrade-Faculty of Chemistry, , Studentski trg 12–16, 11000 Belgrade, Serbia ^bUniversity of Belgrade-ICTM, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia ^cInnovative Centre of Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia; e-mail: nstevanovic@chem.bg.ac.rs The **HL**Cl ligand with metal salts $Cu(BF_4)_2 \cdot 6H_2O$ / $MnCl_2 \cdot 4H_2O$ / $Zn(BF_4)_2 \cdot 6H_2O$ and NaN_3 , in methanol form mononuclear penta coordinated complexes $[CuL(N_3)(CH_3OH)]BF_4$ (1) and $[ZnL(N_3)_2]$ (2) and binuclear $[Mn_2L_2(\mu_{-1,1}-N_3)_2(N_3)_2] \cdot 2CH_3OH$ (3) complex. **Fig. 2** [Mn₂L₂(μ -_{1,1}-N₃)₂(N₃)₂]·2CH₃OH Complexes 1, 2 and 3 were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and DFT calculations. In all three complexes ligand (L^1) is coordinated in deprotonated formally neutral form *via* NNO donor set atoms. Complexes 1 and 3 crystallize in the monoclinic crystal system with space group No. 14 ($P2_1/n$ and $P2_1/c$ cell settings, respectively) and complex 2 in the triclinic crystal system with space group P-1 (No. 2). According to the DFT studies, Cu(II) complex is the most stable in square-planar geometry, while in the same DMSO solution, Mn(II) complex is the mixture of [MnL(N₃)₂] and [Mn₂L₂(μ -_{1,1}-N₃)₂(N₃)₂] complexes. **Fig. 4** Structure of [CuL¹(N₃)]⁺ complex ion optimized at ZORA-BP86-D3/TZP-COSMO(DMSO) level of theory **Fig. 5** Structure of [MnL¹(N₃)₂] complex optimized at ZORA-BP86-D3/TZP-COSMO(DMSO) level of theory