From Wind and Solar Energy to Chemical Energy Storage: Understanding and Engineering Catalysis under Dynamic Conditions

758. WE-Heraeus-Seminar

10 – 13 January 2022

ONLINE

Introduction

The Wilhelm und Else Heraeus-Stiftung is a private foundation that supports research and education in science with an emphasis on physics. It is recognized as Germany's most important private institution funding physics. Some of the activities of the foundation are carried out in close cooperation with the German Physical Society (Deutsche Physikalische Gesellschaft). For detailed information see https://www.we-heraeus-stiftung.de

Aims and scope of the 758. WE-Heraeus-Seminar:

The German Energy Transition ("Energiewende") aims at decreasing net emissions of CO_2 by 95 % and increase the renewable energy fraction to 60 % by 2050. Similar targets are aimed at in other European countries and around the globe. An important aspect in the future is storage in chemicals and the production of fuels and chemicals based on renewable sources, particular based on wind turbines and photovoltaic solar power. The idea is to transform low-energy molecules such as water and CO_2 into high-energy reactive molecules: hydrogen, hydrocarbons, oxygenates and fuels. In contrast to conventional resources, wind and solar power fluctuates on time scales of minutes to days – depending on season, time of day and weather. Processes in focus are water electrolysis into hydrogen and oxygen, as well as conversion of CO_2 into hydrocarbons and oxygenates including methane, methanol and CO. Primarily, these processes were developed and well-studied for steady-state applications. In order to understand and optimize them under fluctuating conditions, new catalyst concepts must be developed – a very challenging topic in catalysis.

Orchestrating the complex interplay between imposed dynamic operation conditions and a concomitant or intrinsic structural evolution of the working catalysts will require an unprecedented mechanistic understanding at the atomic scale. Besides traditional catalyst preparation and testing, novel hierarchical catalyst design, advanced characterization tools as well as detailed modeling and simulation approaches will become ever more important to this end. Research in this area thus embraces predictive - quality first - principles calculations, multiscale modeling, data science and analytics, operando spectroscopies and in situ microscopies, as well as kinetic measurements, materials and reactor design. This requires a strong interaction of scientists from physics, theory, chemistry and engineering.

Bringing scientists from these various disciplines together, this WE-Heraeus Seminar aims at presenting the current state of research and advances towards such dynamic operation of catalytic energy storage systems, with significant focus on the fundamental methods that drive this research.

Introduction

Scientific Organizers:

Prof. Dr. Jan-Dierk Grunwaldt	Karlsruhe Institute of Technology, Germany E-mail: <u>grunwaldt@kit.edu</u>
Prof. Dr. Roger Gläser	University of Leipzig, Germany E-mail: <u>roger.glaeser@uni-leipzig.de</u>
Prof. Dr. Karsten Reuter	Fritz Haber Institute of the Max Planck Society, Berlin, Germany E-mail: <u>reuter@fhi.mpg.de</u>

Administrative Organization:

Dr. Stefan Jorda Mojca Peklaj	Wilhelm und Else Heraeus-Stiftung Kurt-Blaum-Platz 1 63450 Hanau, Germany
	Phone +49 6181 92325-18 Fax +49 6181 92325-15 E-mail peklaj@we-heraeus-stiftung.de Internet: www.we-heraeus-stiftung.de

Program

Program (CET)

Monday, 10 January 2022

Chair: Jan-Dierk Grunwaldt

08:30 – 08:40	Jan-Dierk Grunwaldt Roger Gläser Karsten Reuter	Welcome
08:40 - 09:35	Ulrike Diebold	Fundamental Studies Using Surface Science Technique
09:35 – 10:20	Petra de Jongh	Design of Heterogeneous Catalysts
10:20 – 10:45	COFFEE BREAK / NET	WORKING
10:45 – 11:30	Beatriz Roldan Cuenya	From Clusters to Catalysts in Energy Storage
11:30 – 12:15	Ib Chorkendorff	Experimental Aspect of Electrochemical Ammonia Synthesis
12 :15 – 12:30	Stefan Jorda	About the Wilhelm and Else Heraeus Foundation
12:30 – 14:00	LUNCH BREAK / NETV	VORKING
14:00 – 14:45	Karl J. J. Mayrhofer	Electrocatalysis
14:45 – 15:30	Eranda Nikolla	Electrocatalytic Reduction of CO_2
15:30 – 16:00	COFFEE BREAK / NET	WORKING
16:00 – 16:45	Ulrike Krewer	Modelling of Electrocatalytic Systems
16:45 – 18:15	Posterflash (1 min) an (MeetAnyway)	d Poster Session I

Program (CET)

Tuesday, 11 January 2022

Chair: Karsten Reuter

08:30 – 09:30	Robert Schlögl	Future of Energy Storage in Chemicals
09:30 – 10:15	Regina Palkovits	CO2-Hydrogenation and Oxymethylene Ethers
10:15 – 10:45	COFFEE BREAK / NET	WORKING
10:40 – 11:30	Martin Muhler	New Insights into Methanol Synthesis
11:30 – 12:15	Nico Fischer	Advanced Characterization and Understanding of Fischer-Tropsch Catalysts
12:15 – 13:30	LUNCH BREAK / NETV	VORKING
13:30 – 15:00	Posterflash (1 min) and (MeetAnyway)	d Poster Session II
15:00 – 15:30	COFFEE BREAK / NET	WORKING
15:30 – 16:30	Ferdi Schüth	Future Energy Scenarios
16:30 – 18:15	Angelika Heinzel Andreas Förster Maximilian Fleischer Bert M. Weckhuysen	Panel Discussion "Our Energy System in 2050"

Wednesday, 12 January 2022

Chair: Roger Gläser

08:30 – 09:30	Bert M. Weckhuysen	Operando Spectroscopy and Microscopy in Catalysis
09:30 – 10:15	Marc Willinger	Advances in Electron Microscopy
10:15 – 10:45	COFFEE BREAK / NE	TWORKING
10:45 – 11:30	Mirijam Zobel	In Situ/Operando Characterization Using Synchrotron Scattering Techniques
11:30 – 12:30	Jens K. Nørskov	Electrochemical Nitrogen Activation, Insights from Theory
12:30 – 14:00	LUNCH BREAK / NET	WORKING
14:00 – 14:45	Jan Rossmeisl	Predicting Electrocatalysis at the Atomic Scale
14:45 – 15:30	Zachary W. Ulissi	Continued Progress towards Generalizable Machine Learning Models in Computational Catalysis
15:30 – 16:00	COFFEE BREAK / NE	TWORKING
16:00 – 16:45	Olaf Deutschmann	Novel Tools for Digitalization and Archiving of Experimental and Modelling Data in Reaction Kinetics
16:45 – 17:45	Julia Schmoeckel (TBC)	Weather Forecast and Renewable Energies

Thursday, 13 January 2022

Chairs: Karsten Reuter / Roger Gläser

08:30 – 09:15	Stephan Schunk	Catalyst Design by Digitalization Approaches
09:15 – 10:00	Anke Hagen	Solid Oxide Electrolyzer under Dynamic Load for Hydrogen and Syngas Production
10:00 – 10:30	COFFEE BREAK / NE	TWORKING
10:30– 11:15	Roland Dittmeyer	Decentralized Processes: Energy- Related Catalysis Using Modular Reactor Design
11:15– 12:15	Gabriele Centi	Outlook for CO2-Reduction and Future Scenarios on a European Level
12:15 – 12:30	Organizers	Closing Remarks and Poster Prize
12:30	END OF THE SEMINA	4 <i>R</i>

Posters

Poster Session II – Tuesday, 11 January 2022

12	Alexander Bodach *	Hydrogen Activation by AI-N Lewis Pairs and Mechanochemical Syntheses of Organometallic Compounds
13	Charlotte Fritsch *	Development of a Ceramic Membrane Reactor for Coupled Propane Dehydration and Hydrogen Production
14	Florian Hausen *	Revealing Surface Transformations by operando Friction Force Microscopy
15	Klara Sophia Kley *	Selective Hydrogenation of High Concentrated Acetylene with Mechanochemical Prepared Pd-Ag/α-Al2O3 as a Catalyst
16	Kevin Kuhlmann *	Reactive CFD and NMR: Bringing Research Areas Together for Detailed, Full-Field Validation
17	Xiaoran Liu *	AI-N Compounds for Hydrogen Activation and as Energetic Materials
18	Fei Wang *	24/7 Dispatchable Solar Power System Powered by High Temperature Hydrogen Storage Materials
19	Yonghyuk Lee	Data-Efficient Iterative Training of Machine- Learning Gaussian Approximation Potentials for Surface Structure Determination of Living Heterogeneous Catalysts
20	Felix Studt	Theoretical Studies on the Conversion of Methanol to Olefins Using Acidic Zeolites
21	Daliborka Nikolić	Analysis of Possible Improvement of Forced Periodically Operated Chemical Reactor with Methanol Synthesis Based on Nonlinear Frequency Response Method

Abstracts of Posters

(in alphabetical order)

Analysis of possible improvement of forced periodically operated chemical reactor with methanol synthesis based on Nonlinear Frequency Response Method

Daliborka Nikolić^a, Carsten Seidel^b, Matthias Felischak^c, Dalibor Marinković^a, Achim Kienle^{b,c}, Andreas Seidel-Morgenstern^{b,c}, Menka Petkovska^d

^a University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia

^b Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany

 $^\circ$ Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany

^d University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, 11000 Belgrade, Serbia

Abstract

Forced periodic operations, as one way of Process Intensification, can be used in order to achieve better performances of chemical reactors, in comparison to conventional steady-state operation. In this study the Nonlinear Frequency Response (NFR) method, a powerful analytical and approximate tool which gives an answer whether and under which conditions certain periodic operation would lead to improvement of process performance was used. The analysis was done for the methanol synthesis using a standard Cu/ZnO catalyst performed in an isothermal and isobaric lab-scale CSTR. At first the single input modulations were analysed. The inputs considered for periodic modulation are: partial pressures of each reactant in the feed stream and the total volumetric inlet flow-rate. The objective was to maximize the mean molar outlet flow-rate of methanol. The specific forcing parameters were optimized. The results of the NFR analysis showed that modulations of single inputs do not provide potential for significant improvements.

The study was extended to analysis of periodic operations with simultaneous modulations of two inputs. Six possible input combinations were analysed and the optimal forcing parameters which maximizing again the time-average methanol production were determined. For all combinations an improvement is possible, but for some cases it was found to be not significant. However, significant improvements are predicted for a) simultaneous modulation of the partial pressure of CO_2 in the feed steam and the volumetric inlet flow-rate and b) simultaneous modulation of the partial pressure of hydrogen (H₂) and the volumetric inlet flow-rate [1, 2]. The highest improvement could be achieved for simultaneous modulation of the inlet partial pressure of CO and the inlet volumetric flow rate.

References:

[1] Nikolić, D., Seidel, C., Felischak, M., Miličić, T., Kienle, A., Seidel-Morgenstern, A., Petkovska, M., Chem. Eng. Sci., 2021, 117134

[2] Nikolić, D., Seidel, C., Felischak, M., Miličić, T., Kienle, A., Seidel-Morgenstern, A., Petkovska, M, Chem. Eng. Sci., 2021, 117133