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Abstract Freshwater ecosystems are among the most

threatened in the world, while providing numerous

essential ecosystem services (ES) to humans. Despite

their importance, research on freshwater ecosystem

services is limited. Here, we examine how freshwater

studies could help to advance ES research and vice versa.

We summarize major knowledge gaps and suggest

solutions focusing on science and policy in Europe. We

found several features that are unique to freshwater

ecosystems, but often disregarded in ES assessments.

Insufficient transfer of knowledge towards stakeholders is

also problematic. Knowledge transfer and implementation

seems to be less effective towards South-east Europe.

Focusing on the strengths of freshwater research regarding

connectivity, across borders, involving multiple actors can

help to improve ES research towards a more dynamic,

landscape-level approach, which we believe can boost the

implementation of the ES concept in freshwater policies.

Bridging these gaps can contribute to achieve the ambitious

targets of the EU’s Green Deal.
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INTRODUCTION

Nature is valued by people in many different ways, while at

the same time natural ecosystems are being degraded and

destroyed at an unprecedented scale (Dı́az et al. 2015;

European Environment Agency (EEA) 2019). One

approach to assess and convey the value of nature to

mankind relies on formulating the vital dependence of

humans on nature in terms of ‘ecosystem services’, or as

‘nature’s contribution to people’ (Dı́az et al. 2015; Pascual

et al. 2017). In order to enhance policy uptake and the

chances of success of conservation and restoration

attempts, high-level science-policy platforms have been

established that served policy makers with integrated and

agreed information on the extent of biodiversity and

ecosystem loss and also presented projections to the future

(Dı́az et al. 2015; IPBES 2018a; European Environment

Agency (EEA) 2019).

Freshwater ecosystems are among the most threatened

in the world, with global declines in their area by 64% from

1997 to 2011, and for Europe by 50% from 1970 to 2008

(Costanza et al. 2014; IPBES 2018a; Gozlan et al. 2019).

They are also especially vulnerable to multistressor effects

(Borgwardt et al. 2019). Freshwaters—lakes, rivers, wet-

lands, including floodplains—have always played a major

role in the history of humankind and the goods and services

they provide are of key importance to our survival and

well-being (Wantzen et al. 2016). Systematic reviews list

between 20 and 32 ecosystem services (ES), the most

frequently mentioned ones being recreation and tourism,

water supply, water quality control, habitat provision,

erosion prevention as well as food supply and climate

regulation (Hanna et al. 2018; Kaval 2019). Freshwater ES

studies name numerous provisioning services, like sup-

plying fertile soils for agriculture and places for orchards in

the floodplains, reed for construction, drinking water, and

food (fish, crustaceans, molluscs) (Reynaud and Lanzanova

2017; Tomscha et al. 2017; Hanna et al. 2018; Hossu et al.

2019). Freshwater ecosystems also provide several regu-

lating services, like groundwater recharge, flood regulation,

microclimate regulation, carbon sequestration, water

quality control (Bullock and Acreman 2003; Aldous et al.

2011; Tomscha et al. 2017; Hossu et al. 2019) as well as

cultural services, such as the existence of spiritual places,
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their symbolic and aesthetic value, inspiration, giving a

sense of place to people and several recreational aspects—

swimming, angling, boating (Wantzen et al. 2016; Hanna

et al. 2018; Hossu et al. 2019; Thiele et al. 2020). In

addition, services like providing habitat for fish, amphibian

and bird populations, including spawning grounds and

migration as well as seed dispersal (Aldous et al. 2011;

Hettiarachchi et al. 2015; Tomscha et al. 2017; Hanna et al.

2018) support the overall functioning of the ecosystem.

Hence, it is not surprising that river and lake ecosystems as

well as wetlands have the highest estimated per ha value of

ES supply of all inland ecosystems (12,512 9 1012 $/year

and 25,681 9 1012 $/year for lakes/rivers and for fresh-

water wetlands, compared to 3137–4166 9 1012 $/year for

temperate forests and grasslands) while being the smallest

in terms of surface area (0.39% and 0.12% for lakes/rivers

and for freshwater wetlands—Costanza et al. 2014).

Despite their importance, research on freshwater

ecosystem services (FES) is limited. For example, reviews

on riverine ES found only 69–89 studies across the past

years (Hanna et al. 2018; Kaval 2019), and 1026 studies for

lake and wetland ES together (Xu et al. 2018), while

Reynaud and Lanzanova (2017) found 133 studies focusing

solely on lake economic valuation. A systematic review on

the assessment and conservation management in large

floodplain rivers revealed that only 1.6% of the studies

addressed ES (Er}os et al. 2019), even though considering

ES can be highly relevant when assessing the effects of

river restoration as shown in the recent study by Funk et al.

(2020). On the other hand, a review of * 3.000 publica-

tions showed that many papers on ES were published in

general environmental journals, or specific sectoral jour-

nals (forestry, agriculture, etc.), but hardly any in water-

related journals (McDonough et al. 2017). It is only in

recent years that more comprehensive water-related pro-

jects on ES can be found, such as AQUACROSS (Anzal-

dua et al. 2018; Langhans et al. 2019) and RESI (Podschun

et al. 2018).

On the one hand, several reviews (e.g. Martin-Ortega

et al. 2015; Tomscha et al. 2017; Hanna et al. 2018; Kaval

2019) identified research gaps in freshwater ES related to

the assessment of multiple ES, ES interactions (trade-offs

and synergies) and transdisciplinary approaches, which are

more of a general nature and not restricted to ES applica-

tions in freshwater ecosystems. On the other hand, ‘tradi-

tional’ freshwater ecological literature has dealt with a

diversity of freshwater-specific issues and developed a set

of ecosystem-specific concepts e.g. River Continuum

Concept (Vannote et al. 1980), Flood Pulse Concept (Junk

et al. 1989), Stable States theory for shallow lakes (Sch-

effer 1990). Integrating freshwater-related ecological con-

cepts and discussing elementary features of lentic and lotic

waters can help advance ES research as well as aquatic

management practices.

In this paper we summarise the output of a workshop

aimed at identifying knowledge gaps in freshwater

ecosystem services (FES)-related research and addressed

the following research questions:

What are the challenges and knowledge gaps in fresh-

water ES studies that are of outstanding importance:

(a) specifically for the analysis of freshwater ecosystems

and their services?

(b) for the implementation of the ES concept in manage-

ment and integrated valuation of freshwaters and

related policies?

(c) for future work in ES research in general, where

freshwater research can advance ES research?

METHODS

The workshop ‘Aquatic ecosystem services—assessment,

management and socio-economic challenges’ took place

between 27th and 28th of November 2019, in Budapest,

Hungary (http://aquaticES.ecolres.hu/). The workshop

aimed to give an overview on the state-of-the-art knowl-

edge on aquatic ecosystem services, from (anthropogenic)

pressures to the condition of rivers and lakes and the

diversity of benefits that humans obtain from these

ecosystems, including the possibilities and potential

drawbacks of quantifying natural systems.

The 22 participants were all experts working in the field

of freshwater research and/or ecosystem service research

and coming from Central and Eastern Europe (from Serbia,

Bosnia and Herzegovina, Croatia, Romania, Hungary,

Austria, Germany). The workshop comprised three steps

(1) introducing participants and some invited presentations

as food for thought (2) a world café with two rounds and

two groups in each (3) a joint reflection and summary of

results.

In the first round of the world café issues were collected

that the participants found relevant in their own (freshwater

related) experience regarding the application of the ES

framework. Lead by the moderators, positive as well as

negative experiences were gathered, aspects where the ES

framework was found useful and where difficulties were

encountered in its application to freshwater ecosystems. In

the second round of the world café the participants changed

groups. After the moderators wrapped up the first round,

the presented difficulties were further developed towards

the identification of knowledge gaps. The second day, this

collection was structured into emerging clusters, discussed

and refined in a joint reflection by the thirteen authors of

this paper.
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After the workshop, the topics were complemented with

an extensive literature review. Thus, while all workshop

members framed the study and contributed evidence and

ideas, the decisions on the final content were made by the

authors of the paper (including decisions on knowledge gap

categorization and direction of knowledge transfer). Lit-

erature was screened based on keyword searches related to

the emerging issues, background knowledge and expertise

of the authors and snowballing.

Altogether, we identified six major topics, with a num-

ber of challenges and knowledge gaps (Table 1). We

classified four different types of knowledge gaps: some

topics involve real gaps in knowledge which can be called

‘‘conceptual or relationship knowledge gaps’’, others

reflect gaps in methodological implementation (‘‘method-

ology gaps’’). In some cases, knowledge is theoretically

available, but not sufficiently widespread (see also 3.6):

transfer is limited either geographically (e.g. from Western

Europe towards South-east Europe) or between sectors or

organizations (e.g. from academia towards management) or

simply not well enough known (possibly also because

methodology is not easy to implement)—we can refer to

these rather as ‘‘challenges’’ that need attention and

fostering.

We also evaluated the specific findings from the point of

view of knowledge transfer: wherever knowledge or

methods of assessment/management are more developed,

better accepted or work in some way better regarding

freshwater ecosystems than ES research in general, we

mark this, as well as the other way round: issues/practices

that work better in more general ES approaches and are less

successfully implemented in FES studies.

In the following sections, we present the emerging

issues and complement them with suggestions on how to

address these complex questions.

RESULTS

We developed a conceptual framework (see also Fig. 1): at

the core of most issues identified are several features which

are unique to freshwater ecosystems and have a firm

(bio)physical basis. These are embedded in a landscape that

is divided into ecological and administrative units.

Both,’unchangeable’ biophysical features as well as rela-

tively fixed ecological entities need to be reconciled with

man-made administrative units. Integration between the

different relevant sectors—as well as between different

valuation approaches resulting in an integrated valuation of

ES—might be one way forward. Integrated valuation of ES

itself holds a number of challenges regarding datasets and

methods like accessibility, geographical coverage and

availability for example. These challenges are shaped by

properties of the socio-ecological system (research infras-

tructure, funding, etc.), which in turn can be influenced by

policy. Both of these are human-made and can be changed

relatively easily, at least compared to biophysical attri-

butes. The exchange of knowledge (between science and

other stakeholders, like policy actors and managers) and

the enhancement of knowledge exchange—factors that rely

on all of us—is the key to ensure the preservation the

functioning of freshwater ecosystems.

The unique features of freshwater ecosystems

and their role in the supply of ES

One of the most prominent features of freshwaters is their

unique spatial structure that distinguishes them from ter-

restrial habitats, influencing the spatial and temporal dis-

tribution of ES and their interactions. Waterbodies are

embedded within the terrestrial landscape constitut-

ing’transitional systems in space and time’ (Hettiarachchi

et al. 2015). As the watershed area is much greater than the

surface area of either rivers or lakes, interactions between

land and water are more pronounced when we include the

strong impact of land on water (e.g. through fertilizer

input) emphasizing the critical role of connectivity and

interfaces for the overall functioning of freshwater systems.

The strong directionality of the flow of material and energy

distinguishes lotic freshwaters from terrestrial systems,

while fluctuations in water level are crucial for wetlands

and lakes. Both constitute changes in extent and shoreline

and have the potential to affect biota as well as stake-

holders. In riverine habitats, interactions resulting from the

distinct directionality and unique connectedness of rivers

across broad spatial scales strongly influence local-scale

habitat features and organization of the biota (Thorp et al.

2013; Er}os and Grant 2015), with inevitable effects on

ecosystem functions and services.

Due to their linear structure, rivers are especially sus-

ceptible to fragmentation effects, like those resulting from

building hydroelectric power plants (transversal) or by

building levees along river banks (longitudinal). In fact,

these connectivity relationships may be the most funda-

mental difference between riverscapes and terrestrial

landscapes because the linear structure of rivers allows for

disproportionately large effects of barriers. Studies proved

that hydropower dams can cause enormous degradation of

biodiversity and ecosystem services by impeding connec-

tivity in freshwater networks (Wu et al. 2003; Poff et al.

2007; Borgwardt et al. 2019). In terrestrial habitats, one

single obstacle could rarely cause such disproportionate

harm, as circumventing barriers is more feasible (Er}os and

Lowe 2019). Thus, whereas terrestrial ecosystems are often

valued as more or less closed entities, with local-scale

supply of ES, this is not possible for water-related
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ecosystems and services, as inputs from other ecosystems

and catchment-level effects have to be taken into account

(Bennett et al. 2009; Thorp et al. 2010; Qiu and Turner

2013; Hanna et al. 2018). Resulting from the high con-

nectedness of aquatic ecosystems, a quantification of

interactions between their ES is challenging (c.f. ‘‘Inte-

grated valuation of freshwater ecosystem services’’ section)

but all the more important due to the potential impact of

management measures on both terrestrial and freshwater

systems (c.f. ‘‘Incorporating ES into management and to

increase EU policy coherence on water related ES’’

section).

Waters are not only connected on the surface, but also in

an invisible way, to groundwater. Surface water bodies can

be connected along aquifers, whereas within the whole

watershed, sub-surface and surface run-off connects both

terrestrial influences to waterbodies and groundwater.

Therefore, ES of surface waters should be managed with

regard to hydrologic processes connecting both (Qiu and

Turner 2013). Although mainly driven by abiotic factors,

groundwater ecosystems can provide numerous ES, which

is rarely taken into consideration (Griebler and Avramov

2015; Pinke et al. 2020). Groundwater levels have been

declining due to direct water abstraction (pumping) for

drinking water and irrigation (Gozlan et al. 2019) for

example, but also due to reduced opportunities for

recharge. Recharge can occur in wetlands of floodplains,

but river regulations in the past centuries resulted in a

reduction of potential recharge areas (Bullock and Acre-

man 2003; Aldous et al. 2011).

Temporal aspects also need to be considered, as due to

water level fluctuations the borders of freshwater systems

are dynamically changing. The periodic change in size/

volume is thus another unique feature of most freshwater

ecosystems: regular flood events, potentially occurring

both in rivers and lakes, provide an even stronger linkage

between terrestrial and aquatic habitats, enhancing lateral

connectivity—the connections between the main river/

water body and its surrounding floodplains and oxbows.

However, droughts and drying also change the boundaries

and have massive impacts on ecosystem functioning and

ES (Moomaw et al. 2018; Keller et al. 2020). Riparian

zones constitute transitional areas between land and

freshwater that are of special value for biodiversity and

ecosystem functioning (e.g. Flood Pulse Concept, Junk

et al. 1989; Wantzen et al. 2016; Tomscha et al. 2017).

However, management of an ecosystem that regularly

changes its extent poses special challenges, especially if

the pulsing is to be reconciled with human needs. Haines-

Young and Potschin (2010) classified ES based on their

Fig. 1 The unique features of freshwater ecosystems (1) are at the very core of all of the discussed issues. These are nested within ecological and

administrative borders (2, blue-watershed, red-administrative border), that makes integrated valuation of the ES necessary (3), to which issues

regarding datasets and methods are related (4). Accessibility, coverage and availability of both, data and methods, are shaped by the features of

the socio-ecological system (violet) defined by management and policy (5) as well as knowledge exchange among stakeholders (including policy

actors and management) (6). For details regarding the six specific issues, see Table 1
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spatial characteristics, and listed several basic water related

ES ‘water regulation/flood protection’, ‘water supply’,

‘sediment regulation/erosion control’, ‘nutrient regulation’

as ‘directional flow related’, in contrast to local scale or

global, but non-directional ES. Nevertheless, the majority

of later ES mapping and assessment works neglected the

more complex spatial aspects and concentrated on the easy-

to-map local or ‘proximal’ ES. Concepts of ‘service pro-

viding units’ and ‘service benefitting areas‘have been

developed, but are still challenging to implement (Syrbe

and Walz 2012). Therefore, frameworks attempting to

adapt general ES approaches to waters, and rivers need to

take directional flow into account, e.g. by integrating

hydrologic models into their frameworks (e.g. Keeler et al.

2012; Hallouin et al. 2018).

Mapping habitats, land cover/land use, or ecosystems

constitutes an essential task for ES assessments. The nar-

row, linear shape of streams and the small size of many

lentic waters is a challenge for proper representation in the

maps: if the grid used is too coarse, the extent of the

ecosystem might be strongly underrepresented or com-

pletely missing from the maps (e.g. Tomscha et al. 2017).

Also, the correct mapping/representation of the terrain

elevation is crucial in order to be able to model water flow

directions properly.

Finding solutions across ecological

and administrative scales for ES assessments

Spatial scaling is an issue that has been around for decades

with some more recent advances based on fine-resolution

remotely sensed data (Tomscha et al. 2017). Deciding

about the right scale—or multiple scales—for an ES

assessment is of great importance, as different scales can

yield different results (Friberg et al. 2017; Hanna et al.

2018). Most water-focused studies use a watershed

approach, and this is also suggested as the appropriate scale

for management by the EEA (Hanna et al. 2018; European

Environment Agency 2019), as well as for Water Frame-

work Directive assessments (EC 2003). Nevertheless, there

are still a great number of studies complying with juris-

dictional boundaries, as this is the scale for administrative

actions, including national funding and regulations (Mihók

et al. 2017). This approach however, cannot give optimal

results from an ecological point of view (Kaval 2019).

International and/or cross-border co-operation could help

in tackling this problem.

Directional flow also entails a line of social and man-

agement issues, where the effects of upstream decisions are

being carried on by people and ecosystems further down-

stream, potentially to different administrative units (Thorp

et al. 2006; Brauman et al. 2007; Hanna et al. 2018).

Sensibilization towards this fact has been successfully

applied in the UK for example (‘upstream thinking’—

Schaafsma et al. 2015).

Questions regarding how integration between different

scales should be implemented can also arise at the data

level, when working with a diversity of datasets. Datasets

from different sources, with different spatial scales, reso-

lution and units need to be transformed and integrated into

one comprehensive dataset for large scale studies. As

databases—even within countries (e.g. Engloner et al.

2019)—are developed by different agencies or institutions,

their integration poses difficulties and is often missing (for

example regarding hydrological and meteorological data).

The spill-over (zonal/remote) effects of water bodies—

effects of water that are detectable across a wider area

within their surroundings—are not sufficiently known, e.g.

at what distance water bodies can have an effect on

microclimate via evaporation, potentially providing cli-

mate regulation even at regional scale, or how retaining

water in floodplains effects groundwater levels in the sur-

rounding areas in the long run (Bullock and Acreman 2003;

Pinke et al. 2020). Changes in local and regional air tem-

perature could be detected and analysed by remote sensing,

backed with data provided by local in situ sensors for

calibration.

Integrated valuation of freshwater ecosystem

services

Assessment of ES is often seen as synonymous with

monetary valuation since at least Costanza’s work on the

world’s ecosystem services in (1997). Putting monetary

values on ‘nature’ is a critical issue that crystallized during

the workshop, as monetization is perceived as dangerous,

which was the most controversial experience that partici-

pants reflected on. This shows that the misconception that

monetary valuation is the only way to make ES comparable

is still persistent outside the ES community and the fact

that the ES concept embraces a much wider range of values

should be communicated widely (Schröter et al. 2014).

Focusing on non-monetary values, like the perceived

importance of different FES, taking a deliberative approach

with inclusion of traditional ecological knowledge, pref-

erences of local stakeholders as well as presenting bio-

physical values wherever possible can be a good solution

towards a well-balanced assessment, e.g. as multi-criteria

decision analysis, elicitation of socio-cultural preferences

or by analysing social networks (Martı́n-López et al. 2012;

Gómez-Baggethun et al. 2016; Martin and Mazzotta 2018).

The value of ES, no matter if monetary or non-monetary,

depends on various factors. Monetary value depends

especially strongly on the demand and the examined eco-

nomic situation, e.g. the availability of the specific asset

(Bateman et al. 2011; Reynaud and Lanzanova 2017).
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Demand for a service however, might change quickly, if

the societal setting or the supply changes. The perceived

value of ES has been shown to depend on the viewpoint of

the stakeholders (Martı́n-López et al. 2012; Paudyal et al.

2018; Hossu et al. 2019). Changes in both the social and

the ecological system—including land use-changes—can

therefore lead to very different valuation results, both in

monetary and non-monetary terms (e.g. Shackleton et al.

2018). Scenario analyses might shed light on anticipated

changes in ES value as well as adopting values from other

regions to a hypothetical situation, similar to the benefit

transfer technique widely used for economic valuation of

ES (e.g. Reynaud and Lanzanova 2017; Decsi et al. 2020;

Vermaat et al. 2020).

Assessing single ecosystem services is one step. How-

ever, the strength of the ecosystem services concept lies in

assessing multiple ES at once for underpinning holistic

management measures. For aggregating multiple ES, a

common denominator is needed, which can either be

achieved by monetization (Reynaud and Lanzanova 2017),

but also by other quantitative methods, e.g. hotspot analysis

(Qui and Turner 2013; Schulp et al. 2014; Tomscha et al.

2017). Relative scales—e.g. an ordinal scale with scores

from 1 to 5, as often used in ES matrix applications—seem

to offer an easy solution, but should be handled with care

and not be mistaken for interval or ratio values, that can

actually be added up (Czúcz et al. 2018). In order to give

relative scales a meaningful interpretation, they need to be

standardized and connected to biophysical values.

The Water Framework Directive (WFD; Poikane et al.

2014) is a valuable tool for evaluating the ecological

quality/potential of freshwater systems on a relative scale,

where biological and chemical indicators are combined in

an intercalibration process and used to evaluate water body

quality and give guidance on the necessary management

needs. The WFD monitoring could be complemented by an

ES valuation system in the future as there are already

several direct and indirect links (Kistenkas and Bouwma

2018). An adaptation to terrestrial ecosystems based on a

similar, systematic intercalibration process to assess the

ecological quality could open up new directions in the

development of a terrestrial ES valuation system. The

approach developed in the RESI (River Ecosystem Service

Index, Podschun et al. 2018) project allows the integration

of the WFD relative scores and combines them with

additional datasets (such as land use, digital elevation

model, soil maps etc.) towards an ES assessment including

up to 15 ES relevant in rivers and floodplains. Thereby, all

ES values are based on individual indicators and models

that are finally valued on a relative scale from very low (1)

to very high (5) service provision (Podschun et al. 2018).

This enables an evaluation of freshwater management

scenarios based on the change in overall functionality of

the ecosystem, as e.g. shown for a 75 km stretch of the

Danube in Stammel et al. (2020). As the use of relative

scales is already established in the WFD, stakeholders’

acceptance towards relative ES scales might be higher than

for monetary approaches.

While there are several frameworks according to which

landscape-level decisions could be made (optimization, e.g.

according to pareto-optimal combinations of ES—Vallet

et al. 2018), within the ES-related topics, it is often mul-

tifunctionality that is promoted as the best solution (Sanon

et al. 2012; Funk et al. 2020). Sensitive and protected areas

might however not always be outstanding in terms of

multifunctionality. Along these lines, there is an on-going

debate in nature conservation: whether land should be used

as multifunctional as possible (‘land-sharing’) (e.g. asses-

sed for floodplains: Funk et al. 2020), or whether there

should be designated areas, for one specific or a set of

prioritized functions (e.g. for conservation, ‘land sparing‘).

These approaches could be combined using spatial opti-

mization, in which win–win solutions are sought by

accounting for ES delivery in each scenario (Er}os et al.

2018).

Enhancing databases and methods

With remote sensing and processing and big (EU-wide)

monitoring schemes, the availability and also the diversity

of datasets has increased, but so has the effort to overview

them and find the best/available datasets. This enables EU-

wide ES assessments on the one hand (Grizzetti et al. 2019)

but also offers an opportunity for downscaling (Aldous

et al. 2011) that might be especially valuable in data-scarce

regions (e.g. towards SE Europe). The development of

intelligent databases that compile themselves based on a

pre-defined search algorithm within an (internet-based)

application could be an innovative solution (e.g. Ames

et al. 2012). The use of social media and citizen-science

based data is an emerging field in environmental research

that has mainly been used to assess cultural ES but also to

monitor aquatic ecosystems (Ghermandi and Sinclair

2019). Despite the increasing availability of data and

coordinated attempts to gather more (e.g. as part of the

WFD implementation), there are still large information

gaps on the status of freshwater ecosystems: according to

the EEA (2019), the status of 40% of these ecosystems is

still unknown, while outside of the EU, data is mainly

focused on protected areas, leaving other areas’ status in

the dark.

The usual way of developing ES assessments is based on

gathering existing knowledge via consulting experts

(IPBES 2018b). However, there are still several areas,

especially within freshwater environments, where appro-

priate evidence is missing or assessed only with limited
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confidence. Here, often small-scale modelling tools exist,

which are not feasible at larger scales (see scaling issues

above). Building and testing some ‘quick-and-dirty’

methods to give a rough estimate on ES within a reasonable

time frame are needed. Here, the ES matrix approach

(Burkhard et al. 2009; Jacobs et al. 2015) that combines

ecosystem types with ES via look-up tables has proven to

be a valuable tool that still needs to be adapted to local

conditions. An assessment of uncertainty is highly recom-

mended, albeit rarely performed (Burkhard et al. 2009;

Campagne et al. 2020; Maes et al. 2020). As many aspects

within freshwaters are more interconnected (see above), it

is probably more difficult to develop easy-to-implement ES

assessment methods than it is for terrestrial ecosystems,

while for some ES it is simply not possible. For example,

nutrient retention still poses a great challenge as very

detailed information on relevant processes is required for a

thorough quantification (Grizzetti et al. 2019).

Modelling approaches for ES encompass a wide variety

of methods and tools (Schulp et al. 2014; Hanna et al.

2018): from the very simple matrix models to somewhat

more refined, but still land-use based models, including

spatial rules (Kienast et al. 2009; Czúcz et al. 2018; Arany

et al. 2019) and up to higher tier models, which are often

process-based, empirical or statistical models (Schulp et al.

2014). For assessing ES, highly developed, data-intense

modelling tools are mainly available for specific fields and

at local to regional scales, e.g. hydrological models (e.g.

SWAT, Hydrus1-D). If large scale ES assessments are to

be completed or multiple ES are to be assessed at the same

time (e.g. national MAES), simpler models are more often

the only feasible ones, due to limited resources. With

matrix-based modelling it is hardly possible to include any

directional influences, which limits applicability when

modelling ES related to the flow of water. Comparing

simple models with higher tier models offers the opportu-

nity to assess uncertainty. Upscaling higher tier models

from the local/regional/watershed scale to larger areas is

not evident, but potentially feasible and needs testing

(Grêt-Regamey et al. 2015; Hanna et al. 2018).

Incorporating ES into management and to increase

EU policy coherence on water related ES

While institutions and governance are recognized to be of

key importance for ES co-production (Pascual et al. 2017;

Mastrángelo et al. 2019), regarding planning, design and

management, there are still several points that hinder

implementation. Already before the rise of the ES concept,

the IWRM (Integrated Water Resources Management)

approach emphasized the importance to connect environ-

mental issues and human well-being, and partly already

implemented stakeholder integration, while also aiming at

multidisciplinarity (Blackstock et al. 2015; Maynard et al.

2015; Grizzetti et al. 2016a). Still, added value is seen in

including an ES approach in river basin management plans

by its potential for trade-off analysis, better linkages

towards and recognition of human well-being aspects

(Maynard et al. 2015; Grizzetti et al. 2016b; Crossman

et al. 2019) or in its combination with cost-effectiveness

analyses (Boerema et al. 2018).

A general lack of ES-based integration between the

different EU-level policies and management measures can

be observed regarding the numerous policies related to

water, e.g. the Nitrate Directive, the Flood Directive, the

Habitat Directive, the Biodiversity Strategy, the Drinking

Water and the Bathing Water Directives as well as others

on adaptation to climate change (Council Directives

91/676/EEC, Directive 2007/60/EC, 92/43/EEC, 98/83/EC,

2006/7/EC, EC, 2011, 2013), social cohesion (EU Regu-

lation No 1300/2013) and energy efficiency (Council

Directive 2012/27/EU). Often different policies either

contradict each other, or are disregarded by one another

(Naumann et al. 2011).

Putting for example measures of the WFD and flood

directives in direct relation to their potential effect on ES

delivery can help to compare consequences of different

measures in a systematic way (Schindler et al. 2016;

Hornung et al. 2019). Due to the interactions between ES,

trade-offs arise with the implementation of different man-

agement measures, typically between (agricultural) provi-

sioning and cultural ES (Hornung et al. 2019).

Freshwaters can also be seen as ‘blue infrastructure’ (EC

2013a, b). The importance of green and blue infrastructure

is also acknowledged in the EU Biodiversity Strategy for

2030 (2020/380/EC). An integrated consideration of blue-

green infrastructure networks in landscape planning and

governance can also help to address societal challenges

using nature-based solutions (Albert et al. 2019).

Improve communication, education and knowledge

transfer

Forwarding and communicating cutting-edge findings in

science towards society, practice/implementation and pol-

icy is vital in order to channel the interest of stakeholders

and funding to these areas. For this latter, however, a clear

communication between science and decision-makers is

needed. This seems to be less efficient in eastern Europe as

experienced by the workshop participants—a pattern

observed generally in knowledge transfer and accessibility

between high- vs low-GDP countries (Karlsson et al. 2007;

Jeffery 2014; Blicharska et al. 2017). There is a gap

between available knowledge in theory, that is accessible

in academic studies and knowledge actually implemented

and integrated in management (Langhans et al. 2014; Xu
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et al. 2018; Lindenmayer 2020). Thus, communication and

education targeting nature conservation needs to be

enhanced. Better knowledge transfer was also seen by

workshop participants as a key to implement and make use

of the advantages offered by the ecosystem services con-

cept. In cases where practitioners did have experience with

the ecosystem services approach, they perceived it as a

very useful tool for involving stakeholders’ perspectives

and highly suitable for solving conflicts (own experience;

Maynard et al. 2015; Grizzetti et al. 2016b).

For more effective communication, ‘knowledge brokers’

(Saarela and Rinne 2016) who work exclusively on the

transfer of knowledge from science to practice could be

involved. In this regard freshwater science can learn from

ES research and even more from social sciences by

adopting truly interdisciplinary methods in order to

enhance system-, target- and transformation knowledge for

integrated planning (Albert et al. 2019).

Rivers and their floodplains are outstanding in the pro-

vision of cultural ES (Thiele et al. 2020) as people are

highly connected to water historically, culturally and also

emotionally (Corral-Verdugo et al. 2015). This attachment

represents a good starting point for communication, edu-

cation and knowledge transfer regarding conservation

issues, while the ES concept helps to communicate these

issues with a multitude of stakeholders and to balance

between different uses/needs.

Knowledge transfer is also needed from traditional

knowledge holders towards science and policy (Molnár and

Berkes 2018). The effective integration of traditional

knowledge (or indigeneous and local knowledge) is a key

priority of the IPBES assessments (Dı́az et al. 2015;

Mastrángelo et al. 2019). Former cultures settling in

floodplains dynamically adapted to flood pulses in contrast

to todays’ static structures—this knowledge/practices

should be taken more into consideration in formulating

alternative water management solutions (see also Wantzen

et al. 2016). Historically, one option for floodplain man-

agement was the use of oxbow lakes in Hungary—fluvial

lakes that were periodically connected to the river during

high water levels and used for raising fish stocks, while

their flooding decreased flood levels at the same time (Biró

2009; Molnár and Berkes 2018). Nowadays, possibilities of

re-vitalizing this management system are discussed inten-

sely (Werners et al. 2009; Derts and Koncsos 2012; Guida

et al. 2015).

CONCLUSIONS

In this paper, we highlighted that freshwaters comprise

numerous unique features (e.g. high lateral and longitudi-

nal connectivity, directional flow, vertical connections to

the subsurface), which make their assessment and man-

agement more challenging. These aspects also hold true

when including them in an ES assessment framework.

Many features presented in the previous sections not only

pose problems to be solved, but can also present an

opportunity with which we might be able to better address

more general questions in ES research, and thereby add to

the development of the ES framework. As such, we dis-

cussed strong spatial interlinkages that are often incorpo-

rated in (water-related) modelling tools, but disregarded in

terrestrial assessments; the watershed approach, which

takes hydrological borders and not administrative borders

as the basis of an assessment; and upstream–downstream

issues that show the discrepancy between service providing

units and service benefitting areas in a pronounced way in

river environments that need to be accounted for in ter-

restrial environments, too—for these, a number of good

practice examples are available from riversides (Schaafsma

et al. 2015). Due to their special features, it is more evident

to adopt a holistic, integrated approach in many freshwater

cases. With this, the multifunctionality within an ecological

entity or the interlinking changes related to different sec-

toral policies can also be analysed better (Schindler et al.

2014; Hornung et al. 2019). Addressing issues like con-

nectivity would be a significant improvement for ES

assessments in terrestrial systems that might well fit the

concepts of green infrastructure. Harmonizing EU policy

related to water and integrating ES assessments into rele-

vant policy pieces could assist in developing target specific

measures, in governance as well as in research, like for the

incoming EU Horizon Europe research and innovation

framework. Focusing on the strengths of freshwater

research can help to improve the ecosystem services

framework towards a more holistic, landscape-level

approach, which we believe can boost realization of con-

servation attempts and achieving EU and global sustain-

ability goals. As the overview of possible solutions

showed, the first steps are already on the way giving rise to

more intense cooperations across disciplines and countries.
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Giucă, M. Leone, S. McConnell, et al. 2016a. Ecosystem

services for water policy: Insights across Europe. Environmental
Science & Policy 66: 179–190. https://doi.org/10.1016/j.envsci.

2016.09.006.

Grizzetti, B., D. Lanzanova, C. Liquete, A. Reynaud, and A.C.

Cardoso. 2016b. Assessing water ecosystem services for water

resource management. Environmental Science & Policy 61:

194–203. https://doi.org/10.1016/j.envsci.2016.04.008.

Guida, R.J., T.L. Swanson, J.W.F. Remo, and T. Kiss. 2015. Strategic

floodplain reconnection for the Lower Tisza River, Hungary:

Opportunities for flood-height reduction and floodplain-wetland

reconnection. Journal of Hydrology 521: 274–285. https://doi.

org/10.1016/j.jhydrol.2014.11.080.

Haines-Young, R., and M. Potschin. 2010. The links between

biodiversity, ecosystem services and human well-being. In:

D.G. Raffaelli and C.L.J. Frid, eds., Ecosystem ecology,
pp. 110–139. Cambridge: Cambridge University Press. https://

doi.org/10.1017/cbo9780511750458.007.

Hallouin, T., M. Bruen, M. Christie, C. Bullock, and M. Kelly-Quinn.

2018. Challenges in using hydrology and water quality models

� The Author(s) 2021

www.kva.se/en 123

Ambio 2022, 51:135–151 147

https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.3897/oneeco.3.e26363
https://doi.org/10.3897/oneeco.3.e26363
https://doi.org/10.1007/s42977-020-00032-6
https://doi.org/10.1007/s42977-020-00032-6
https://doi.org/10.1556/Pollack.7.2012.3.8
https://doi.org/10.1016/j.cosust.2014.11.002
https://doi.org/10.1016/j.cosust.2014.11.002
https://doi.org/10.1111/fwb.12596
https://doi.org/10.1007/s40823-019-00044-6
https://doi.org/10.1007/s40823-019-00044-6
https://doi.org/10.1111/1365-2664.13142
https://doi.org/10.1016/j.ecolind.2018.11.026
https://doi.org/10.1016/j.ecolind.2018.11.026
https://doi.org/10.1016/j.ecoser.2015.10.011
https://doi.org/10.1016/j.ecoser.2015.10.011
https://doi.org/10.1002/wat2.1190
https://doi.org/10.1002/wat2.1190
https://doi.org/10.1002/rra.3662
https://doi.org/10.1016/j.gloenvcha.2019.02.003
https://doi.org/10.1016/j.gloenvcha.2019.02.003
https://doi.org/10.1080/20442041.2018.1510271
https://doi.org/10.1016/j.ecoser.2014.10.008
https://doi.org/10.1016/j.ecoser.2014.10.008
https://doi.org/10.1086/679903
https://doi.org/10.1086/679903
https://doi.org/10.1016/j.scitotenv.2019.03.155
https://doi.org/10.1016/j.scitotenv.2019.03.155
https://doi.org/10.1016/j.envsci.2016.09.006
https://doi.org/10.1016/j.envsci.2016.09.006
https://doi.org/10.1016/j.envsci.2016.04.008
https://doi.org/10.1016/j.jhydrol.2014.11.080
https://doi.org/10.1016/j.jhydrol.2014.11.080
https://doi.org/10.1017/cbo9780511750458.007
https://doi.org/10.1017/cbo9780511750458.007


for assessing freshwater ecosystem services: A review. Geo-
sciences 8: 45. https://doi.org/10.3390/geosciences8020045.

Hanna, D.E.L., S.A. Tomscha, C. Ouellet Dallaire, and E.M. Bennett.

2018. A review of riverine ecosystem service quantification:

Research gaps and recommendations. Edited by Danny Hooft-

man. Journal of Applied Ecology 55: 1299–1311. https://doi.org/
10.1111/1365-2664.13045.

Hettiarachchi, M., T. Morrison, and C. McAlpine. 2015. Forty-three
years of Ramsar and urban wetlands.. https://doi.org/10.1016/J.
GLOENVCHA.2015.02.009.

Hornung, L.K., S.A. Podschun, and M. Pusch. 2019. Linking

ecosystem services and measures in river and floodplain

management. Ecosystems and People 15: 214–231. https://doi.

org/10.1080/26395916.2019.1656287.
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Schröter, M., E.H. van der Zanden, A.P.E. van Oudenhoven, R.P.

Remme, H.M. Serna-Chavez, R.S. de Groot, and P. Opdam.

2014. Ecosystem services as a contested concept: A synthesis of

critique and counter-arguments. Conservation Letters 7:

514–523. https://doi.org/10.1111/conl.12091.

Schulp, C.J.E., W. Thuiller, and P.H. Verburg. 2014. Wild food in

Europe: A synthesis of knowledge and data of terrestrial wild

food as an ecosystem service. Ecological Economics 105:

292–305.

Shackleton, R.T., R. Biggs, D.M. Richardson, and B.M.H. Larson.

2018. Social-ecological drivers and impacts of invasion-related

regime shifts: Consequences for ecosystem services and human

wellbeing. Environmental Science & Policy 89: 300–314. https://
doi.org/10.1016/j.envsci.2018.08.005.

Stammel, B., C. Fischer, B. Cyffka, C. Albert, C. Damm, A.

Dehnhardt, H. Fischer, F. Foeckler, et al. 2020. Assessing land

use and flood management impacts on ecosystem services in a

river landscape (Upper Danube, Germany). River Research and
Applications. https://doi.org/10.1002/rra.3669.

Syrbe, R.-U., and U. Walz. 2012. Spatial indicators for the assessment

of ecosystem services: Providing, benefiting and connecting

areas and landscape metrics. Ecological Indicators 21: 80–88.

https://doi.org/10.1016/j.ecolind.2012.02.013.

Thiele, J., C. Albert, J. Hermes, and C. von Haaren. 2020. Assessing

and quantifying offered cultural ecosystem services of German

river landscapes. Ecosystem Services 42: https://doi.org/10.1016/
j.ecoser.2020.101080.

Thorp, J.H., J.E. Flotemersch, M.D. Delong, A.F. Casper, M.C.

Thoms, F. Ballantyne, B.S. Williams, B.J. O’Neill, et al. 2010.

Linking Ecosystem services, rehabilitation, and river hydroge-

omorphology. BioScience 60: 67–74. https://doi.org/10.1525/bio.
2010.60.1.11.

Thorp, J.H., M.C. Thoms, and M.D. Delong. 2006. The riverine

ecosystem synthesis: Biocomplexity in river networks across

space and time. River Research and Applications 22: 123–147.

https://doi.org/10.1002/rra.901.

Thorp, K.R., A.N. French, and A. Rango. 2013. Effect of image

spatial and spectral characteristics on mapping semi-arid range-

land vegetation using multiple endmember spectral mixture

analysis (MESMA). Remote Sensing of Environment 132:

120–130. https://doi.org/10.1016/j.rse.2013.01.008.

Tomscha, S.A., S.E. Gergel, and M.J. Tomlinson. 2017. The spatial

organization of ecosystem services in river-floodplains. Eco-
sphere 8: https://doi.org/10.1002/ecs2.1728.

Vallecillo, S., A. La Notte, S. Ferrini, and J. Maes. 2019. How

ecosystem services are changing: An accounting application at

the EU level. Ecosystem Services 40: https://doi.org/10.1016/j.

ecoser.2019.101044.

Vallet, A., B. Locatelli, H. Levrel, S. Wunder, R. Seppelt, R.J.

Scholes, and J. Oszwald. 2018. Relationships between ecosystem

services: Comparing methods for assessing tradeoffs and syner-

gies. Ecological Economics 150: 96–106. https://doi.org/10.

1016/j.ecolecon.2018.04.002.

Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E.

Cushing. 1980. The river continuum concept. Canadian Journal

� The Author(s) 2021

www.kva.se/en 123

Ambio 2022, 51:135–151 149

https://doi.org/10.1007/s13157-018-1023-8
https://doi.org/10.1007/s13157-018-1023-8
https://doi.org/10.1016/j.ecolind.2011.06.022
https://doi.org/10.1016/j.ecolind.2011.06.022
https://doi.org/10.1016/j.cosust.2016.12.006
https://doi.org/10.1016/j.forpol.2018.01.011
https://doi.org/10.1016/j.forpol.2018.01.011
https://doi.org/10.1016/j.scitotenv.2020.136555
https://doi.org/10.1016/j.scitotenv.2020.136555
https://doi.org/10.1073/pnas.0609812104
https://doi.org/10.1073/pnas.0609812104
https://doi.org/10.1016/j.envsci.2014.08.006
https://doi.org/10.1016/j.envsci.2014.08.006
https://doi.org/10.1073/pnas.1310539110
https://doi.org/10.1016/j.ecolecon.2017.03.001
https://doi.org/10.1016/j.ecolecon.2017.03.001
https://doi.org/10.1016/j.ecolind.2015.07.016
https://doi.org/10.1016/j.ecolind.2015.07.016
https://doi.org/10.1016/j.jenvman.2012.06.008
https://doi.org/10.1017/cbo9781316178904.010
https://doi.org/10.1017/cbo9781316178904.010
https://doi.org/10.1007/s10531-016-1129-3
https://doi.org/10.1007/s10980-014-9989-y
https://doi.org/10.1007/s10980-014-9989-y
https://doi.org/10.1111/conl.12091
https://doi.org/10.1016/j.envsci.2018.08.005
https://doi.org/10.1016/j.envsci.2018.08.005
https://doi.org/10.1002/rra.3669
https://doi.org/10.1016/j.ecolind.2012.02.013
https://doi.org/10.1016/j.ecoser.2020.101080
https://doi.org/10.1016/j.ecoser.2020.101080
https://doi.org/10.1525/bio.2010.60.1.11
https://doi.org/10.1525/bio.2010.60.1.11
https://doi.org/10.1002/rra.901
https://doi.org/10.1016/j.rse.2013.01.008
https://doi.org/10.1002/ecs2.1728
https://doi.org/10.1016/j.ecoser.2019.101044
https://doi.org/10.1016/j.ecoser.2019.101044
https://doi.org/10.1016/j.ecolecon.2018.04.002
https://doi.org/10.1016/j.ecolecon.2018.04.002


of Fisheries and Aquatic Sciences 37: 130–137. https://doi.org/

10.1139/f80-017.

Vermaat, J.E., B. Immerzeel, E. Pouta, and A. Juutinen. 2020.

Applying ecosystem services as a framework to analyze the

effects of alternative bio-economy scenarios in Nordic catch-

ments. Ambio 49: 1784–1796. https://doi.org/10.1007/s13280-

020-01348-2.

Wantzen, K.M., A. Ballouche, I. Longuet, I. Bao, H. Bocoum, L.
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