Supporting Information

Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the

Liverwort Lunularia cruciata

Miroslav Novakovic, ${ }^{*}{ }^{\dagger},\| \|$ Danka Bukvicki, ${ }^{\star}, \|, \nabla$ Boban Andjelkovic, ${ }^{\S}$ Tatjana Ilic-Tomic, ${ }^{\perp}$ Milan Veljic, ${ }^{\ddagger}$ Vele Tesevic, ${ }^{\S}$ and Yoshinori Asakawall
${ }^{\dagger}$ Institute of Chemistry, Technology and Metallurgy, ${ }^{\ddagger}$ Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", ${ }^{\S}$ Faculty of Chemistry, ${ }^{\perp}$ Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
$\|_{\text {Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima }}$ 770-8514, Japan
${ }^{\nabla}$ Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 46, 40127 Bologna, Italy

Table S1. Elution Program for the Silica Gel Column Separation

n-hexane	100	95	90	88	85	82	80	77	74	71	67
EtOAc	0	5	10	12	15	18	20	23	26	29	33
V (ml)	200	700	700	400	200	700	400	500	700	800	700
Fr. No.	-	-	-	-	-	$0-46$	$47-62$	$63-82$	$83-113$	$114-148$	$149-182$

n-hexane	63	60	57	54	50	40	30	20	0
EtOAc	37	40	43	46	50	60	70	80	100
$\mathrm{~V}(\mathrm{ml})$	400	700	700	400	300	300	200	200	200
Fr. No.	$183-200$	$201-229$	$230-260$	$261-277$	$278-290$	$291-305$	$306-315$	$316-330$	$331-339$

Figure S1. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$

Figure S2. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$

Figure S3. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 1

Figure S4. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$

Figure S5. Aromatic part of the COSY spectrum of compound $\mathbf{1}$

Figure S6. The first part of the NOESY spectrum of compound $\mathbf{1}$

Figure S7. The second part of the NOESY spectrum of compound 1

Figure S8. The third part of the NOESY spectrum of compound $\mathbf{1}$

Figure S9. Aromatic part of the HSQC spectrum of compound $\mathbf{1}$

Figure S10. Aliphatic part of the HSQC spectrum of compound $\mathbf{1}$

Figure S11. The first part of the HMBC spectrum of compound $\mathbf{1}$

Figure S12. The second part of the HMBC spectrum of compound 1

Figure S13. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2

Figure S14. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2

Figure S15. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2

Figure S16. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2

Figure S17. Aromatic part of the COSY spectrum of compound 2

Figure S18. The first part of the NOESY spectrum of compound 2

Figure S19. The second part of the NOESY spectrum of compound 2

Figure S20. The third part of the NOESY spectrum of compound 2

Figure S21. Aromatic part of the HSQC spectrum of compound 2

Figure S22. The first part of the HMBC spectrum of compound $\mathbf{2}$

Figure S23. The second part of the HMBC spectrum of compound 2

Figure S24. The third part of the HMBC spectrum of compound 2

Figure S25. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$

Figure S26. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$

Figure S27. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$

Figure S28. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$

Figure S29. Aromatic part of the COSY spectrum of compound $\mathbf{3}$

Figure S30. Aromatic part of the NOESY spectrum of compound $\mathbf{3}$

Figure S31. Aromatic part of the HSQC spectrum of compound $\mathbf{3}$

Figure S32. The first part of the HMBC spectrum of compound $\mathbf{3}$

Figure S33. The second part of the HMBC spectrum of compound $\mathbf{3}$

Figure S34. The third part of the HMBC spectrum of compound $\mathbf{3}$

Figure S35. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4

Figure S36. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4

Figure S37. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4

Figure S38. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4

Figure S39. Aromatic part of the COSY spectrum of compound 4

Figure S40. The first part of the NOESY spectrum of compound $\mathbf{4}$

Figure S41. Aromatic part of the HSQC spectrum of compound 4

Figure S42. Aliphatic part of the HSQC spectrum of compound $\mathbf{4}$

Figure S43. Aromatic part of the HMBC spectrum of compound 4

Figure S44. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of riccardin F at room temperature

Figure S45. Aromatic part of ${ }^{1} \mathrm{H}$ NMR spectrum of the purified riccardin F at 243 K

Figure S46. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$

Figure S47. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$

Figure S48. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 recorded in mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$

Figure S49. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ recorded in mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$

Figure S50. Aromatic part of the COSY spectrum of compound $\mathbf{1 1}$ recorded in mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$

Figure S51. NOE correlations of aromatic protons of compound $\mathbf{5}$

Figure S52. HSQC correlations of aromatic protons of compound 5

Figure S53. HSQC correlations of aliphatic protons of compound 5

Figure S54. The first part of the HMBC spectrum of compound $\mathbf{5}$ recorded in mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$

Figure $\mathbf{S 5 5}$. The second part of the HMBC spectrum of compound $\mathbf{5}$ recorded in mixture of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$

Figure S56. HMBC correlations of benzyl protons of compound 5

Figure S57. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

Figure S58. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

Figure S59. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

Figure S60. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

Figure S61. Aromatic part of the COSY spectrum of compound 6

Figure S62. The first part of the NOESY spectrum of compound $\mathbf{6}$

Figure S63. The second part of the NOESY spectrum of compound 6

Figure S64. Aromatic part of the HSQC spectrum of compound 6

Figure S65. Aliphatic part of the HSQC spectrum of compound 6

Figure S66. The first part of the HMBC spectrum of compound $\mathbf{6}$

Figure S67. The second part of the HMBC spectrum of compound 6

Figure S68. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7

Figure S69. Aliphatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7

Figure S70. Aromatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Figure S71. Aliphatic part of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Figure S72. Aromatic part of the COSY spectrum of compound 7

Figure S73. Aromatic part of the NOESY spectrum of compound 7

Figure S74. Aromatic part of the HSQC spectrum of compound 7

Figure S75. Aliphatic part of the HSQC spectrum of compound 7

Figure S76. The first part of the HMBC spectrum of compound 7

Figure S77. The second part of the HMBC spectrum of compound 7

Figure S78. The third part of the HMBC spectrum of compound 7

Figure S79. HMBC correlation H-8/C-10 in compound 7

Table S2. Cytotoxicity ($\mathrm{IC}_{50}, \mu \mathrm{M}$) of Bisbibenzyls on Two Human Cell Lines Determined by MTT Assay

Compound	Cell line		SI
	MRC5	A549	
Lunularin	200	150	
Perrottetin E	40.0	25.0	
Perrottetin F	30.0	15.0	
Riccardin C	15.0	22.5	
Riccardin F	15.0	30.0	
Riccardin G	7.5	2.5	3
1	40.0	10.0	4
2	60.0	10.0	6
3	5.0	5.0	1
4	15.0	10.0	1.5
5	3.0	5.0	0.6
6	30.0	60.0	
7	15.0	40.0	
Methylated	$>120^{\text {b }}$	>120	
perrottetin \mathbf{E}			
Methylated	>120	>120	
Perrottetin F			
Cisplatin	3.5	2.5	1.4

${ }^{a}$ Results represent mean of three independant experiments
done in quadriplicate, with standard deviation between 1-5\%.
${ }^{b}$ not cytotoxic under tested conditions.
${ }^{c} S I-$ selectivity index

