Natural Product Communications 2018

Volume 13, Number 4, Pages 479-482

Microbial Transformation of Calamintha glandulosa Essential Oil by Aspergillus niger

Miroslav Novakovic, Danka Bukvicki, Vlatka Vajs, Vele Tesevic, Slobodan Milosavljevic, Petar Marin and Yoshinori Asakawa

Supplementary data

Text S1. General experimental procedures
Table S1. Elution system for the silica gel column chromatography separation of biotransformed products
Figure 1S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5
Figure 2S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5
Figure 3S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6
Figure 4S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6
Figure 5S. ${ }^{1}$ H NMR spectrum of compound 7
Figure 6S. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7
Figure 7S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Text S1. General experimental procedures:

Silica gel 60 (SiO 2 ; under 0.063 mm , Merck) was used for the column chromatography. Analytical and preparative TLC were carried out on silica gel 60 GF254 $20 \times 20 \mathrm{~cm}$ plates, layer thickness 0.25 mm (Merck). NMR spectra ($1 \mathrm{H}, 13 \mathrm{C}$, HSQC, HMBC) were recorded on a Varian 500 -PS spectrometer at 500 MHz for 1 H and 125 MHz for 13C, with CDCl 3 as solvent and TMS as reference. GC/MS was conducted on an Agilent Technologies 6890 N gas chromatograph coupled with a mass detector Agilent Technologies 5973 , provided with a DB $5(30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID $\times 0.25 \mu \mathrm{~m} \mathrm{df})$ capillary column. The analyses were performed in EI mode $(70 \mathrm{eV})$ using He at $1 \mathrm{~mL} / \mathrm{min}$. The injection temperature was set at $250{ }^{\circ} \mathrm{C}$. The analyses were carried out using a temperature program starting from $50^{\circ} \mathrm{C}$ with an initial 5 \min hold to $250^{\circ} \mathrm{C}$, with a $10^{\circ} \mathrm{C} / \mathrm{min}$ heating increase and keeping the final temperature stable for 20 min . The mass range was set at $\mathrm{m} / \mathrm{z} 40-500$ with 3 scans. Transfer line was set at $280^{\circ} \mathrm{C}$. Co-injection of the extracts with C9-C25 hydrocarbons was performed under the same conditions.

Table S1. Elution system for the silica gel column chromatography separation of biotransformed products

$\mathrm{V}(\mathrm{ml})$	100	700	200	200	200	300	300	100	100	300	100	300	300
n-hexane (\%)	100	95	94	93	92	91	90	89	88	87	86	85	84
EtOAc (\%)	0	5	6	7	8	9	10	11	12	13	14	15	16
Fraction	-	$0-$	$22-$	$31-$	$40-$	$49-$	$65-$	$83-$	$90-$	$97-$	$115-$	$138-$	$157-$
number		21	30	39	48	64	82	89	96	114	137	156	173

Compounds $\mathbf{1}$ and $\mathbf{2}$ were isolated from the fractions 24-26 and 21-23, respectively; compounds $\mathbf{3}$ and $\mathbf{4}$ from the fractions 42-48, and 76-80, respectively; compound 5, 6, and 7 from the fractions 65-70 and 5964 , respectively. Further separation and purification was done using preparative TLC plates of silica gel. The system used was n-hexane/ethyl acetate $85: 15$ for compounds $\mathbf{1 , 2 , 3}$, and $\mathbf{4}$, and 80:20 for compounds 5, 6, and 7.

Figure 1S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5

Figure 2S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5

Figure 3S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

Figure 4S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

Figure 5S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7

Figure 6S. Aromatic part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7

Figure 7S. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

