**Supporting Information for** 

## The Irony of Manganocene – An Interplay Between the Jahn-Teller Effect and Close Lying Electronic and Spin States

Stepan Stepanović<sup>1</sup>, Matija Zlatar<sup>1</sup>, Marcel Swart<sup>2,3</sup>, Maja Gruden<sup>4\*</sup>

<sup>1</sup>Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia

<sup>2</sup>Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Facultat de Ciències, 17003 Girona, Spain

<sup>3</sup>ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

<sup>4</sup> University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia

### **Corresponding Author**

\*E-mail: gmaja@chem.bg.ac.rs

# Table of Contents

| Theoretical background and Computational details                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheme S1. Model for the manganocene dimer that was utilized to extract $J_{AB}$ coupling constantS3                                                      |
| Figure S1. Frontier molecular orbitals for MnCp <sub>2</sub> in D <sub>5h</sub> symmetryS4                                                                |
| Table S1. Selected average bond lengths (Å) for OPBE energy-minimized MnCp2 structure and comparison to available gas phase diffraction data              |
| The EDA - results                                                                                                                                         |
| The IDP analysis - results                                                                                                                                |
| Table S2. Contributions of all low symmetry vibrations to the JT distortion <u>CiLS2</u> , E <sub>JT_</sub> and force at high symmetry point              |
| Figure S2. IDP analysis of low symmetry vibrations for both $MnCp_2$ and $[FeCp_2]^+$ S7                                                                  |
| Table S3. Contributions of all high symmetry vibrations to the JT distortion <u><i>CiHS2</i></u> , E <sub>JT</sub> and force at high symmetry point       |
| Figure S3. IDP analysis of the high symmetry vibrations in MnCp <sub>2</sub> S9                                                                           |
| Table S4. Contributions of all high symmetry vibrations to the JT distortion <u><i>CiHS2</i></u> , E <sub>JT</sub> and force at high symmetry point (D5d) |
| References                                                                                                                                                |

#### Theoretical background and Computational details

All DFT calculations were performed with the Amsterdam Density Functional (ADF) suite of program.<sup>1,2</sup> MOs were expanded in an uncontracted set of Slater type orbitals (STOs) of triple- $\zeta$  quality (TZP)<sup>3</sup> and one set of polarization functions. An auxiliary set of s, p, d, f, and g STOs was used to fit the molecular density and to represent the Coulomb and exchange potentials accurately for each SCF cycle. Geometries were optimized with the QUILD program<sup>4</sup> using adapted delocalized coordinates<sup>5</sup> until the maximum gradient component was less than 10<sup>-4</sup> a.u. Energies and gradients were calculated using the OPBE level of theory.<sup>6,7</sup> Nature of stationary points is confirmed by calculating analytical Hessians.

If any nonlinear molecule is found in the electronically degenerate state, there exist a non-totally symmetric normal mode which can reduce the symmetry, remove the degeneracy and lower the energy. In many reallife Jahn-Teller problems, there is more than one normal mode that participates in the structural relaxation and this situation is referred to as a multimode problem. The non-totally symmetric normal mode will distort the geometry to the first subgroup in which at least one of its components belongs to the total symmetric irreducible representation (irrep.). That JT active normal mode may not be the only symmetry label from the high symmetry point group that becomes total symmetric in the new point group and the contributions from all these modes are successfully captured using IDP methodology. In this Manuscript, the high symmetry point groups are  $D_{5h}$  and  $D_{5d}$ , the JT active normal mode belongs to the  $E_1$ ' and  $E_{1g}$  irreps., and they distort the structure to the  $C_{2v}$  and  $C_{2h}$  point groups, respectively.

**Degenerate states** were treated in accordance with all our previous work regarding Jahn-Teller effect,<sup>8-11</sup> by optimizing the geometry with a high symmetry structural constraint and AOC electronic configuration (with  $E_2$ ' state of manganocene, that would mean  $(e_2')^3(a_1')^2(e_1'')$  electronic configuration, in which ADF occupies the degenerate  $e_2'$  orbitals with 0.5  $\beta$  electrons each). Using this structure, the subsequent single points have been performed with the electronic density relaxed to a low symmetry subgroup (for  $D_{5h}$  the first subgroup is  $C_{2v}$ :  $e_2' \rightarrow a_1 + b_1$ ;  $a_1' \rightarrow a_1$ ;  $e_1'' \rightarrow a_2 + b_2$ ), with the two possible resulting configurations:

 $(e_2')^3(a_1')^2(e_1'') \rightarrow (a_1)^2(b_2)^1(a_1)^2(a_2)(b_1)$  or  $(a_1)^1(b_2)^2(a_1)^2(a_2)(b_1)$ .

Detailed descriptions of IDP and Jahn-Teller effect are presented elsewhere.<sup>9-11</sup> **The essence of the IDP** is to express the distortion along a model minimal energy path, projecting the one nuclear configuration to the normal modes of the other. This allows to determine the presence and significance of all normal modes involved. Normal modes are labeled with  $Q_i$ , and  $E_{JT}$  represents energy difference between high symmetry and low symmetry structures, whereas  $R_{JT}$  is used to describe the corresponding geometrical distortion. Analytical frequencies were calculated with ADF2013, OPBE/TZP/integration 6 level of theory, on AOC electronic configurations in degenerate states. In  $D_{5h}$  geometry, since the symmetry of the degenerate electronic state is  $E'_2$  the JT active vibrations must belong to  $E'_1$  irreducible representation. For the distortion in manganocene and ferrocenyl cation from  $D_{5h} \rightarrow C_{2v}$  geometry, the projection of the JT distortion on the normal modes (Eq. 1) of both low symmetry (in eq. LS) and high symmetry (in eq. HS) is compared:

$$R_{JT} = \sum_{i} \omega_{i}^{LS(HS)} \cdot Q_{i}^{LS(HS)} \xrightarrow{\text{normalizing } \omega_{i}^{LS(HS)} \text{ to } 1} C_{i}^{LS(HS)} \text{ with } \sum_{i} (C_{i}^{LS(HS)})^{2} = 1$$
 Eq.1

S1

Coefficients  $\omega_i^{LS(HS)}$  give a contribution of certain normal mode to the JT distortion, and they can be expressed in normalized form as  $C_i^{LS(HS)}$ .  $E_i^{LS(HS)}$  and  $F_i^{LS(HS)}$  show contributions through the specific normal modes to the  $E_{JT}$  and force at high symmetry point.

The energy of the nuclear configuration  $E_x$ , relative to the energy of the reference low symmetry configuration, in harmonic approximation, is expressed as the sum of the energy contributions of all low symmetry totally symmetric normal coordinates ( $N_{a1}$ ):

$$E_{X} = \sum_{k=1}^{N_{a1}} E_{kX} = \frac{1}{2} \sum_{k=1}^{N_{a1}} w_{Xk}^{2} Q_{k}^{2} \lambda_{k}$$
 Eq.2

where  $\lambda_k$  are the eigenvalues of the Hessian from the DFT calculations in the low symmetry minimum energy conformation. In this framework, we can analyze the multimode JT problem by expressing the R<sub>JT</sub> as a superposition of all of the totally symmetric normal coordinates and directly obtaining the energy contributions of all of the normal modes to the total stabilization energy:

$$E_{JT} = \sum_{k=1}^{N_{a1}} E_{kJT} = \frac{1}{2} \sum_{k=1}^{N_{a1}} w_{kJT}^{2} Q_{k}^{2} \lambda_{k}$$
 Eq.3

The force along the normal mode  $Q_k$ ,  $F_{Xk}$ , which drives the nuclei along that coordinate to the minimum, at any point is defined as a derivative of the energy over the Cartesian coordinates.

$$\mathbf{\dot{F}}_{Xtot} = \sum_{k=1}^{N_{a1}} \mathbf{\dot{F}}_{Xk} = \frac{1}{2} \sum_{k=1}^{N_{a1}} w_{Xk} \lambda_k M^{1/2} \mathbf{\dot{O}}_k$$
Eq.4

In the high symmetry point this will give information about the main driving force for the JT distortion.

All EDA calculations were performed with OPBE/TZ2P in order to minimize the basis set superposition error.

**The magnetic behavior** of coupled, spatially separated, local spins is commonly modeled using phenomenological Heisenberg-Dirac Hamiltonian,<sup>12</sup> that reduces complicated quantum mechanical problem to a simplified description in terms of spin degrees of freedom only. For a system that consist of two metal (or radical) centers it can be written as:

 $\hat{H} = -J_{AB}\hat{S}_A \cdot \hat{S}_B$  where  $\hat{S}_A$  and  $\hat{S}_B$  are spin-operators associated with the spin-moments of unpaired electrons residing on spin-centers A and B. Only the total spin is physical observable, and in the case of two local spins, the possible total spins are given by Clebsch-Gordan Series:  $S_A + S_B$ ,  $S_A + S_B - 1$ , ...,  $|S_A - S_B|$ . The two spin-centers are described as ferromagnetically aligned when they produce the maximum total spin  $(S_A^{\uparrow}, S_B^{\uparrow})$ , and antiferromagnetically aligned when they produce minimum total spin  $(S_A^{\uparrow}, S_B^{\downarrow})$ . The  $J_{AB}$  is the magnetic coupling parameter, which measures the strength of isotropic exchange interaction (is positive for ferromagnetic and negative for antiferromagnetic alignment). Thus, by knowing  $J_{AB}$ , it is possible to qualitatively account for the observed magnetic properties of the system. Currently the standard method for determining  $J_{AB}$  is by mapping differences in calculated total energies from electronic structure calculations onto the spin-states of Heisenberg-Dirac Hamiltonian <sup>13</sup>

The problem arises from the fact that only the ferromagnetically coupled ( $S_{MAX} = S_A + S_B$ ) state can be properly described by one Slater determinant. This instantly leads to the conclusion that multideterminantal methodologies that are based on configuration interaction,<sup>14,15</sup> should be used. Unfortunately, such methodologies are usually too computationally demanding to study the large di- and poly nuclear TM complexes, or even the relatively small systems with many unpaired electrons are currently unfeasable.<sup>12</sup> Another drawback is the fact that these systems often possess considerable dynamical correlation, which makes the accurate calculations even more difficult.

Noodleman's suggestion<sup>16,17</sup> was the approach called the broken-symmetry (BS), that represent multideterminantal states with only one antiferromagnetically coupled Slater determinant. One of the artifacts that comes as a consequence of this is the appearance of spin density on sites A and B, although the real singlet state should have spin density equal to zero in any point.<sup>18,19</sup> The key step of the methodology is that orbitals are allowed to relax from the starting form under the action of the variational principle.<sup>12,20</sup> Thus, system is given the additional variational flexibility to lower its energy, and the ground state is formed variationally as a mixture of ferromagnetic state and singlet states generated by charge-transfer (ionic states).<sup>12,20</sup> Although this process is essentially similar to CI, the BS formalism does not have enough flexibility and it can only mix single determinant ferromagnetic and ionic states, and the real ground state, multideterminantal singlet, is not included in a final result. Qualitatively, BS method yields a correct charge density, but, as previously mentioned, there is a fictitious spin density.<sup>18,19</sup>



Scheme S1. Model for the manganocene dimer that was utilized to extract  $J_{AB}$  coupling constant.

We extracted  $J_{AB}$  by using the broken symmetry computational methodology that is s approximately valid over the entire coupling strength regime<sup>21</sup> (Eq. 4) and a dimer model shown on a Scheme S1.

$$J_{AB} = -\frac{E_{HS} - E_{BS}}{\left\langle S^2 \right\rangle_{HS}} - \left\langle S^2 \right\rangle_{BS}} = -\frac{388.8 cm^{-1}}{30.04 - 5.01} = -15.5 cm^{-1}$$
Eq.4

The coordinates for the utilized model are extracted from the X-ray structure of zigzag polymer.



Figure S1. Frontier molecular orbitals for  $MnCp_2$  in  $D_{5h}$  symmetry.

| Distance(Å) | OPBI                                             | E                                | Exp. <sup>22</sup> |
|-------------|--------------------------------------------------|----------------------------------|--------------------|
| Distance(A) | <sup>6</sup> A <sub>1</sub> ' (D <sub>5h</sub> ) | ${}^{2}A_{1}$ (C <sub>2v</sub> ) |                    |
| Mn-Cp       | 2.06                                             | 1.69                             | 2.05               |
| Mn-C        | 2.39                                             | 2.08                             | 2.38               |
| C-C         | 1.42                                             | 1.43                             | 1.43               |
| С-Н         | 1.09                                             | 1.09                             | 1.12               |

Table S1. Selected average bond lengths (Å) for OPBE energy-minimized MnCp<sub>2</sub> structure and comparison to available gas phase diffraction data at elevated temperatures.

## The EDA - results

As it can be noted from Table 1, with Mn(Cp)<sub>3</sub>, interaction between prepared Mn<sup>2+</sup> and 3Cp<sup>2-</sup> fragments is greater for LS, but it is more than compensated with the  $\Delta E_{prep}$ , specifically  $\Delta E_{valexc}$  and  $\Delta E_{cyc-cyc}$ . Since  $\Delta E_{valexc}$  is fairly constant for a given metal in the concrete oxidation state, only  $\Delta E_{cyc-cyc}$  remains for the analysis. So, we conclude that the energy needed to bring 3Cp<sup>-</sup> anions to a molecular geometry is much greater for more compact LS. As a conclusion we could state that unfavorable repulsion between the negative Cp<sup>-</sup> anions overrides the stronger Ligands-Metal interactions in low spin state.

Table 2 shows similar trends with the important difference that repulsion between the negative Cp- anions in much smaller now and in is not enough to override the factors that stabilize the LS state.

#### The IDP analysis - results

The results of IDP analysis for  $D_{5h} \rightarrow C_{2v}$  distortion are summarized in Table S2 (for decomposition in low symmetry normal modes), Table S3 (in high symmetry normal modes), and graphically presented in Fig. S2 and Fig. S3 respectively. For  $D_{5d} \rightarrow C_{2h}$  distortion results are summarized in Table S4 (in high symmetry normal modes).

|          |                         | . Mangai   | nocene                     |                            |           |                         | Ferocen    | yl cation                  |                   |
|----------|-------------------------|------------|----------------------------|----------------------------|-----------|-------------------------|------------|----------------------------|-------------------|
| irrep    | freq(cm <sup>-1</sup> ) | $C_i^{LS}$ | $E_i^{LS}(\text{cm}^{-1})$ | $F_i^{LS}(mdyne)$          | irrep     | freq(cm <sup>-1</sup> ) | $C_i^{LS}$ | $E_i^{LS}(\text{cm}^{-1})$ | $F_i^{LS}(mdyne)$ |
| B2       | -82.6                   | 0          | 0                          | 0                          | B2        | -115.2                  | 0          | 0                          | 0                 |
| A2       | 45.7                    | 0          | 0                          | 0                          | A2        | 28.2                    | 0          | 0                          | 0                 |
| Al       | 136.7                   | 0.6161     | 55.344                     | -0.0158                    | Al        | 154.4                   | 0.5931     | 62.5643                    | -0.0155           |
| AI<br>D2 | 264.7                   | 0.0086     | 2.9096                     | -0.0196                    | B2        | 216.5                   | 0          | 0                          | 0                 |
| B2<br>D1 | 208                     | 0          | 0                          | 0                          | AI<br>D1  | 301.0                   | 0          | 0.0199                     | -0.0065           |
|          | 369.4                   | 0          | 0                          | 0                          |           | 360                     | 0          | 0                          | 0                 |
| A1       | 429.9                   | 0.2966     | 263,502                    | 0.182                      | A1        | 444.9                   | 0.3963     | 347.0618                   | 0.1989            |
| B1       | 477.4                   | 0          | 0                          | 0                          | B1        | 500.4                   | 0          | 0                          | 0                 |
| A1       | 581.5                   | 0.0022     | 3.6517                     | 0.0443                     | A1        | 550.5                   | 0.0025     | 3.3276                     | -0.0191           |
| B2       | 584                     | 0          | 0                          | 0                          | B1        | 568                     | 0          | 0                          | 0                 |
| A2       | 584.1                   | 0          | 0                          | 0                          | A2        | 576.4                   | 0          | 0                          | 0                 |
| B1       | 584.7                   | 0          | 0                          | 0                          | B2        | 584.6                   | 0          | 0                          | 0                 |
| A2       | 767.7                   | 0          | 0                          | 0                          | A1        | 703.1                   | 0.0005     | 1.0205                     | -0.0139           |
| B2       | 775                     | 0          | 0                          | 0                          | A2        | 800.5                   | 0          | 0                          | 0                 |
| BI       | 777.7                   | 0          | 0                          | 0                          | BI        | 807.1                   | 0          | 0                          | 0                 |
|          | /84.9                   | 0.0302     | 89.5/15                    | -0.10//                    | B2<br>D1  | 827.7                   | 0          | 0                          | 0                 |
| A2<br>D1 | /89./                   | 0          | 0                          | 0                          | BI<br>A 1 | 848.7                   | 0 0002     | 0 0152                     | 0 0100            |
|          | 790.0                   | 0 0011     | 3 3458                     | 0 0189                     |           | 849.1<br>852 7          | 0.0003     | 0.9155                     | -0.0109           |
| B2       | 81/13                   | 0.0011     | 0                          | -0.0189                    | R1        | 857.9                   | 0          | 0                          | 0                 |
| B1       | 818.8                   | Ő          | Ő                          | 0                          | B2        | 861.8                   | 0          | 0                          | 0                 |
| A1       | 827.6                   | 0.0286     | 94.07                      | -0.1138                    | A1        | 878.3                   | 0.0046     | 15.5735                    | -0.0412           |
| A2       | 847.6                   | 0          | 0                          | 0                          | Al        | 899.6                   | 0.0006     | 2.1261                     | -0.0136           |
| B2       | 855.2                   | 0          | 0                          | 0                          | A2        | 912.3                   | 0          | 0                          | 0                 |
| A1       | 868.6                   | 0.0102     | 37.091                     | -0.0184                    | B2        | 916                     | 0          | 0                          | 0                 |
| B1       | 874.2                   | 0          | 0                          | 0                          | B1        | 929.1                   | 0          | 0                          | 0                 |
| B1       | 994.8                   | 0          | 0                          | 0                          | B2        | 1010.2                  | 0          | 0                          | 0                 |
| A1       | 1000.2                  | 0.0037     | 17.6183                    | 0.0357                     | A2        | 1013.4                  | 0          | 0                          | 0                 |
| A2       | 1001.7                  | 0          | 0                          | 0                          | B1        | 1014.6                  | 0          | 0                          | 0                 |
| B2       | 1002.3                  | 0          | 0                          | 0                          | Al        | 1019                    | 0.0014     | 6.4918                     | -0.0225           |
| Bl       | 1041.4                  | 0          | 0                          | 0                          | Al        | 1037.6                  | 0.0003     | 1.6519                     | -0.0146           |
| AI       | 1043                    | 0.001/     | 8.8368                     | 0.0321                     | BI        | 1055.1                  | 0          | 0                          | 0                 |
| A2<br>D2 | 1051.5                  | 0          | 0                          | 0                          | A2<br>D2  | 1001.7                  | 0          | 0                          | 0                 |
|          | 1055.8                  | 0 0004     | 2 179                      | 0 0355                     | D2<br>A 1 | 10/5./                  | 0          | 0 0111                     | 0 0016            |
| R1       | 1121 1                  | 0.0004     | 2.179                      | -0.0355                    | R1        | 1131.5                  | 0          | 0.0111                     | -0.0010           |
| A2       | 1228.6                  | Ő          | Ő                          | 0                          | A2        | 1240 1                  | 0          | 0                          | 0                 |
| B2       | 1229.1                  | Õ          | Ő                          | Ő                          | B2        | 1241.2                  | Ő          | Ő                          | Ő                 |
| B1       | 1362.3                  | 0          | 0                          | 0                          | B1        | 1364.3                  | Õ          | 0                          | 0                 |
| A1       | 1374.6                  | 0.0001     | 0.7723                     | -0.01                      | A2        | 1377.9                  | 0          | 0                          | 0                 |
| A2       | 1380.4                  | 0          | 0                          | 0                          | A1        | 1383.6                  | 0          | 0.0512                     | -0.0033           |
| B2       | 1389.4                  | 0          | 0                          | 0                          | B2        | 1397.5                  | 0          | 0                          | 0                 |
| A1       | 1413.5                  | 0.0005     | 4.9981                     | 0.0655                     | B2        | 1426.5                  | 0          | 0                          | 0                 |
| B1       | 1414.7                  | 0          | 0                          | 0                          | Al        | 1432.2                  | 0.0004     | 3.7575                     | -0.0576           |
| B2       | 1424.1                  | 0          | 0                          | 0                          | B1        | 1433                    | 0          | 0                          | 0                 |
| A2<br>D1 | 1426.7                  | 0          | 0                          | 0                          | A2        | 1433.1                  | 0          | 0                          | 0                 |
| BI       | 3167.5                  | 0          | 0 2706                     | 0 0228                     | AI<br>D1  | 3193.7                  | 0          | 0.0364                     | -0.0054           |
| A1<br>A2 | 3108.5                  | 0          | 0.3706                     | 0.0328                     | B1<br>A2  | 3197.7                  | 0          | 0                          | 0                 |
| A2<br>B2 | 3175.4                  | 0          | 0                          | 0                          | A2<br>R2  | 3202.8                  | 0          | 0                          | 0                 |
| B1       | 3189                    | 0          | 0                          | 0                          | B1        | 3215                    | 0          | 0                          | 0                 |
| A1       | 3189 5                  | 0          | 0 139                      | 0 0047                     | A1        | 3215                    | 0          | 0 0745                     | 0 0088            |
| A2       | 3195.2                  | Ő          | 0                          | 0.0047                     | A2        | 32163                   | 0          | 0                          | 0                 |
| B2       | 3195.4                  | Ő          | Ő                          | Ő                          | B2        | 3217                    | Ő          | ŏ                          | ő                 |
| A1       | 3203.1                  | 0          | 0.1232                     | 0.0188                     | B1        | 3229.2                  | Õ          | Õ                          | 0                 |
| B1       | 3205.5                  | 0          | 0                          | 0                          | A1        | 3229.9                  | 0          | 0.0001                     | -0.0022           |
| Rrffa    | mu) 1/2. Angst          | =0.5694    | Errfe                      | m <sup>-1</sup> )=584 5231 |           | R <sub>17</sub> =0 5463 | ;          | $E_{rr}(cm^{-1})=444$      | 4.6834            |
| 11((0    |                         | ., 0.0071  | D11(C                      |                            |           | 1.51 0.0103             |            | -11(**** ) ++              |                   |

Table S2. Contributions of all low symmetry vibrations to the JT distortion  $(C_i^{LS})^2$ ,  $E_{JT}$  and force at high symmetry point.



Figure S2. IDP analysis of low symmetry vibrations for both MnCp<sub>2</sub> and [FeCp<sub>2</sub>]<sup>+</sup>.

Table S3. Contributions of all high symmetry vibrations to the JT distortion  $(C_i^{HS})^2$ ,  $E_{JT}$  and force at high symmetry point.

|                 | Manga                   | nocene     |                         |                  | Feroceny                | l cation   |                         |
|-----------------|-------------------------|------------|-------------------------|------------------|-------------------------|------------|-------------------------|
| irrep           | freq(cm <sup>-1</sup> ) | $C_i^{HS}$ | F <sup>HS</sup> (mdyne) | irrep            | freq(cm <sup>-1</sup> ) | $C_i^{HS}$ | F <sup>HS</sup> (mdyne) |
| AAA1            | 38.9                    | 0          | 0                       | AAA1             | 33.5                    | 0          | 0                       |
| EE1:1           | 148.2                   | 0          | 0                       | EE1:1            | 162.3                   | 0          | 0                       |
| EE1:2           | 148.2                   | 0.6549     | -0.0099                 | EE1:2            | 162.3                   | 0.5780     | 0.0148                  |
| AA1             | 298                     | 0.0378     | 0.0244                  | AA1              | 304.8                   | 0          | -0.0029                 |
| EEE1:1          | 377.6                   | 0          | 0                       | EEE1:1           | 369.5                   | 0          | 0                       |
| EEE1:2          | 377.6                   | 0          | 0                       | EEE1:2           | 369.5                   | 0          | 0                       |
| AAA2            | 482.3                   | 0          | 0                       | EE1:1            | 461.2                   | 0          | 0                       |
| EE1:1           | 503.9                   | 0          | -0.0569                 | EE1:2            | 461.2                   | 0.3830     | -0.2016                 |
| EE1:2           | 503.9                   | 0.2543     | -0.1958                 | AAA2             | 503.6                   | 0          | 0                       |
| EEE2:1          | 614                     | 0          | 0                       | EEE2:1           | 592.6                   | 0          | 0                       |
| EEE2:2          | 614                     | 0          | 0                       | EEE2:2           | 592.6                   | 0          | 0                       |
| EE2:1           | 626.5                   | Õ          | Õ                       | EE2:1            | 610                     | Ő          | Ő                       |
| EE2:2           | 626.5                   | 0.0080     | 0.0572                  | EE2:2            | 610                     | 0.0017     | -0.0006                 |
| EEE1.1          | 786.2                   | 0          | 0                       | EEE2·1           | 804.4                   | 0          | 0                       |
| EEE1.2          | 786.2                   | Ő          | Ő                       | EEE2:2           | 804.4                   | Ő          | Ő                       |
| EEE2·1          | 793.2                   | Ő          | Ő                       | EE2·1            | 831.3                   | 0.0003     | 0.0037                  |
| EEE2.2          | 793.2                   | Ő          | Ő                       | EE2:2            | 831.3                   | 0.0005     | 0.0057                  |
|                 | 805.1                   | Ő          | 0<br>0                  | A A 1            | 852.5                   | 0.0005     | -0.0008                 |
| ΔΔ1             | 81/ 9                   | 0.0004     | 0.0019                  | EFE1.1           | 854.5                   | 0.0005     | 0.0000                  |
| EE2·1           | 823.7                   | 0.0004     | 0.0017                  | EEE1.1<br>FFF1.2 | 854.5                   | 0          | 0                       |
| EE2.1<br>FF2.2  | 823.7<br>823.7          | 0.0280     | 0 1160                  |                  | 856.8                   | 0          | 0                       |
| EE1.1           | 8267                    | 0.0200     | 0.1105                  | EE1.1            | 891.2                   | 0          | 0                       |
| EE1.1<br>EE1.2  | 820.7                   | 0 0045     | 0.0350                  | EE1.1<br>EE1.2   | 881.2                   | 0 0043     | 0 0406                  |
| EE1.2<br>EEE2.1 | 820.7                   | 0.0043     | 0.0350                  | EE1.2<br>EEE2.1  | 024.6                   | 0.0043     | 0.0400                  |
| EEE2.1          | 805.0                   | 0          | 0                       | EEE2.1           | 924.0                   | 0          | 0                       |
| EEE2.2          | 803.0                   | 0          | 0                       | EEE2.2           | 924.0                   | 0          | 0 0025                  |
| EE2:1           | 880.4                   | 0 0044     | 0                       | EE2:1            | 932.5                   | 0          | 0.0035                  |
| EEZ:Z           | 880.4                   | 0.0044     | -0.0077                 | EE212            | 932.5                   | 0          | 0                       |
| EEEI:I          | 1002.1                  | 0          | 0                       | EEEI:I           | 1016.3                  | 0          | 0                       |
| EEEI:2          | 1002.1                  | 0 0024     | 0 0217                  | EEEI:2           | 1010.5                  | 0 0018     | 0 02(2                  |
| EEI:I           | 1012.1                  | 0.0034     | 0.0317                  | EEI:I            | 1022                    | 0.0018     | 0.0262                  |
| EEI:2           | 1012.1                  | 0          | 0                       | EET:2            | 1022                    | 0          | 0                       |
| EEE2:1          | 1048.6                  | 0          | 0                       | EEE2:1           | 1059.5                  | 0          | 0                       |
| EEE2:2          | 1048.6                  | 0          | 0 0212                  | EEE2:2           | 1059.5                  | 0          | 0                       |
| EE2:1           | 1056                    | 0.0031     | 0.0313                  | EE2:1            | 1072.5                  | 0          | 0 00 42                 |
| EE2:2           | 1056                    | 0          | 0                       | EE2:2            | 10/2.5                  | 0.0001     | -0.0043                 |
| AAA2            | 1126.5                  | 0          | 0                       | AAI              | 1134.2                  | 0.0002     | 0.0026                  |
| AAI             | 1129.2                  | 0          | 0.0416                  | AAA2             | 1134.6                  | 0          | 0                       |
| AAAI            | 1232.2                  | 0          | 0                       | AAAI             | 1242                    | 0          | 0                       |
| AA2             | 1233                    | 0          | 0                       | AA2              | 1243.2                  | 0          | 0.0001                  |
| EEE2:1          | 1388.7                  | 0          | 0                       | EEE2:1           | 1381.9                  | 0          | 0                       |
| EEE2:2          | 1388.7                  | 0          | 0                       | EEE2:2           | 1381.9                  | 0          | 0                       |
| EE2:1           | 1405.4                  | 0          | 0                       | EE2:1            | 1407.6                  | 0          | -0.0156                 |
| EE2:2           | 1405.4                  | 0.0002     | -0.0285                 | EE2:2            | 1407.6                  | 0          | 0                       |
| EEEI:I          | 1424                    | 0          | 0                       | EEI:I            | 1433.1                  | 0          | 0                       |
| EEE1:2          | 1424                    | 0          | 0                       | EE1:2            | 1433.1                  | 0.0005     | -0.0549                 |
| EE1:1           | 1425.9                  | 0          | 0                       | EEE1:1           | 1435.1                  | 0          | 0                       |
| EE1:2           | 1425.9                  | 0.0010     | -0.0632                 | EEE1:2           | 1435.1                  | 0          | 0                       |
| EEE2:1          | 3171.2                  | 0          | 0                       | EEE2:1           | 3199.4                  | 0          | 0                       |
| EEE2:2          | 3171.2                  | 0          | 0                       | EEE2:2           | 3199.4                  | 0          | 0                       |
| EE2:1           | 3172.2                  | 0          | -0.0318                 | EE2:1            | 3201.1                  | 0          | 0                       |
| EE2:2           | 3172.2                  | 0          | 0                       | EE2:2            | 3201.1                  | 0          | -0.0046                 |
| EEE1:1          | 3188.4                  | 0          | 0                       | EEE1:1           | 3214.4                  | 0          | 0                       |
| EEE1:2          | 3188.4                  | 0          | 0                       | EEE1:2           | 3214.4                  | 0          | 0                       |
| EE1:1           | 3189.1                  | 0          | 0                       | EE1:1            | 3215.5                  | 0          | 0                       |
| EE1:2           | 3189.1                  | 0          | -0.0170                 | EE1:2            | 3215.5                  | 0          | -0.0100                 |
| AAA2            | 3201.9                  | 0          | 0                       | AAA2             | 3227.6                  | 0          | 0                       |
| AA1             | 3202.8                  | 0          | 0.0144                  | AA1              | 3228.3                  | 0          | 0.0004                  |



Figure S3. IDP analysis of the high symmetry vibrations in MnCp<sub>2</sub>.

|             | Ferocenyl cation    |                          |            |                   |                         |                          |            |                   |
|-------------|---------------------|--------------------------|------------|-------------------|-------------------------|--------------------------|------------|-------------------|
| freq        | (cm <sup>-1</sup> ) | irrep                    | $C_i^{HS}$ | $F_i^{HS}(mdyne)$ | freq(cm <sup>-1</sup> ) | irrep                    | $C_i^{HS}$ | $F_i^{HS}(mdyne)$ |
| 12.3        | 3                   | A1.u                     | 0          | 0                 | -22.3                   | A1.u                     | 0          | 0                 |
| 163         | .1                  | E1.u:1                   | 0          | 0                 | 151.1                   | E1.u:1                   | 0          | 0                 |
| 163         | .1                  | E1.u:2                   | 0          | 0                 | 151.1                   | E1.u:2                   | 0          | 0                 |
| 309         | .2                  | A1.g                     | 0.0152     | 0.011             | 300.3                   | A1.g                     | 0.0586     | 0.0172            |
| 378         | .4                  | E1.g:1                   | 0.9643     | 0.1122            | 389                     | E1.g:1                   | 0.8260     | 0.1096            |
| 378         | .4                  | E1.g:2                   | 0          | 0                 | 389                     | E1.g:2                   | 0          | 0.021             |
| 452         | .1                  | E1.u:1                   | 0          | 0                 | 477.7                   | A2.u                     | 0          | 0                 |
| 452         | 1                   | E1.u:2                   | 0          | 0                 | 478.5                   | E1.u:1                   | 0          | 0                 |
| 507         |                     | A2 11                    | 0          | Ő                 | 478 5                   | E1 u:2                   | 0          | Õ                 |
| 589         | .7                  | E2.u:1                   | 0          | Õ                 | 607.3                   | E2.u:1                   | 0          | Õ                 |
| 589         | .7                  | E2.u:2                   | 0          | 0                 | 607.3                   | E2.u:2                   | 0          | Õ                 |
| 613         | 4                   | E2 g 1                   | Õ          | Ő                 | 630.2                   | E2 g 1                   | 0 0184     | 0.0601            |
| 613         | 4                   | F2 g.2                   | 0.0005     | 0.0081            | 630.2                   | E2.g.1                   | 0          | 0                 |
| 802         | 5                   | E2.g.2<br>E2 u·1         | 0.0005     | 0.0001            | 788 /                   | EL g.1                   | 0.019/     | 0.0615            |
| 802         | 5                   | E2.u.1<br>E2.u.2         | 0          | 0                 | 788.4                   | E1.g.1                   | 0.0174     | 0.0015            |
| 802.<br>922 | 5                   | E2.u.2<br>E2.a:1         | 0          | 0 0022            | 702.2                   | E1.g.2                   | 0          | 0                 |
| 033         | .5                  | E2.g.1                   | 0          | 0.0022            | 792.3                   | E2.u.1                   | 0          | 0                 |
| 055         | .5                  | E2.g.2                   | 0          | 0                 | 192.5                   | E2.u.2                   | 0          | 0                 |
| 851         | .1                  | AI.g                     | 0          | 0.0074            | 802.8                   | AZ.U                     | 0          | 0                 |
| 854         | .2                  | E1.g:1                   | 0.0146     | 0.0599            | 812.7                   | Al.g                     | 0.0005     | -0.0011           |
| 854         | .2                  | E1.g:2                   | 0          | 0.0011            | 823.9                   | E2.g:1                   | 0.0527     | -0.1204           |
| 856         | .5                  | A2.u                     | 0          | 0                 | 823.9                   | E2.g:2                   | 0          | 0                 |
| 880         | .8                  | E1.u:1                   | 0          | 0                 | 824                     | E1.u:1                   | 0          | 0                 |
| 880         | .8                  | E1.u:2                   | 0          | 0                 | 824                     | E1.u:2                   | 0          | 0                 |
| 927         |                     | E2.g:1                   | 0          | -0.0038           | 867.4                   | E2.u:1                   | 0          | 0                 |
| 927         |                     | E2.g:2                   | 0          | 0                 | 867.4                   | E2.u:2                   | 0          | 0                 |
| 927         | .9                  | E2.u:1                   | 0          | 0                 | 876.6                   | E2.g:1                   | 0.0093     | -0.0009           |
| 927         | .9                  | E2.u:2                   | 0          | 0                 | 876.6                   | E2.g:2                   | 0          | 0                 |
| 101         | 7.3                 | E1.g:1                   | 0.0039     | -0.0406           | 1005.2                  | E1.g:1                   | 0.0064     | -0.0406           |
| 101         | 7.3                 | E1.g:2                   | 0          | 0                 | 1005.2                  | E1.g:2                   | 0          | 0                 |
| 102         | 0.9                 | E1.u:1                   | 0          | 0                 | 1010                    | E1.u:1                   | 0          | 0                 |
| 102         | 0.9                 | E1.u:2                   | 0          | 0                 | 1010                    | E1.u:2                   | 0          | 0                 |
| 106         | 2.6                 | E2.u:1                   | 0          | 0                 | 1051.4                  | E2.u:1                   | 0          | 0                 |
| 106         | 2.6                 | E2.u:2                   | 0          | 0                 | 1051.4                  | E2.u:2                   | 0          | 0                 |
| 107         | 0.1                 | E2.g:1                   | 0          | 0                 | 1055.2                  | E2.g:1                   | 0          | 0                 |
| 107         | 0.1                 | E2.g:2                   | 0          | -0.0023           | 1055.2                  | E2.g:2                   | 0.0061     | -0.0382           |
| 113         | 3.8                 | Al.g                     | 0.0001     | 0.0117            | 1128                    | A2.u                     | 0          | 0                 |
| 113         | 5.1                 | A2.u                     | 0          | 0                 | 1129.6                  | A1.g                     | 0.0002     | -0.0202           |
| 124         | 19                  | A2.9                     | 0          | -0.0001           | 1232.5                  | A2.9                     | 0          | 0.0001            |
| 124         | 23                  | A1 u                     | Õ          | 0                 | 1232.8                  | A1 11                    | Ő          | 0                 |
| 138         | 82                  | E2 u:1                   | Ő          | Ő                 | 1397.9                  | E2 u:1                   | Ő          | 0                 |
| 138         | 8.2                 | E2 u:2                   | Õ          | Ő                 | 1397.9                  | E2 u:2                   | Ő          | Ő                 |
| 140         | 1.2                 | E2.u.2<br>E2 $\alpha$ ·1 | 0          | 0.0070            | 1300 /                  | E2.u.2<br>E2 $\alpha$ ·1 | 0.0003     | -0.0232           |
| 140         | 1.2                 | $E_{2.g.1}$              | 0          | 0.0070            | 1300 /                  | E2.5.1                   | 0.0005     | 0.0252            |
| 140         | 1.2<br>2            | E2.g.2                   | 0          | 0                 | 1399.4                  | E2.g.2                   | 0          | 0                 |
| 143         | 2                   | E1.u.1                   | 0          | 0                 | 1424.2                  | E1.u.1                   | 0          | 0                 |
| 143         | 2<br>5 6            | E1.u.2<br>E1 ~·1         | 0          | 0                 | 1424.2                  | E1.u.2                   | 0          | 0                 |
| 145         | 5.0                 | E1.g.1                   | 0 0012     | 0 0720            | 1427.7                  | E1.g.1                   | 0 0015     | 0                 |
| 143         | 5.0                 | E1.g:2                   | 0.0013     | 0.0728            | 1427.7                  | E1.g:2                   | 0.0015     | -0.0680           |
| 320         | 0.7                 | E2.UT                    | 0          | 0                 | 31/2.9                  | E2.UT                    | 0          | 0                 |
| 320         | 0.7                 | E2.u:2                   | 0          | U                 | 31/2.9                  | E2.u:2                   | 0          | U<br>0.0250       |
| 320         | 1.5                 | E2.g:1                   | 0          | 0                 | 3173.1                  | E2.g:1                   | 0          | 0.0358            |
| 320         | 1.5                 | E2.g:2                   | 0          | 0.0022            | 3173.1                  | E2.g:2                   | 0          | 0                 |
| 321         | 5.2                 | E1.g:1                   | 0          | 0                 | 3189.5                  | E1.g:1                   | 0          | 0                 |
| 321         | 5.2                 | E1.g:2                   | 0          | 0.0119            | 3189.5                  | E1.g:2                   | 0          | 0.0130            |
| 321         | 6.1                 | E1.u:1                   | 0          | 0                 | 3190.1                  | E1.u:1                   | 0          | 0                 |
| 321         | 6.1                 | E1.u:2                   | 0          | 0                 | 3190.1                  | E1.u:2                   | 0          | 0                 |
| 322         | 8.4                 | A2.u                     | 0          | 0                 | 3203                    | A2.u                     | 0          | 0                 |
| 222         | 87                  | Δ1 σ                     | 0          | -0.0009           | 3203.4                  | Al σ                     | 0          | -0.0089           |

Table S4. Contributions of all high symmetry vibrations to the JT distortion  $(C_i^{HS})^2$ ,  $E_{JT}$  and force at high symmetry point (D5d).

#### References

1. Baerends, E. J.; Autschbach, J.; Berces, A.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Harris, F. E.; van den Hoek, P.; Jacobsen, H.; van Kessel, G.; Kootstra, F.; van Lenthe, E.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Solà, M.; Swart, M.; Swerthone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visser, O.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Ziegler, T. *Adf 2003.01*, SCM: Amsterdam, 2003.

2. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T., Chemistry with Adf. Journal of Computational Chemistry 2001, 22, 931-967.

3. van Lenthe, E.; Baerends, E. J., Optimized Slater-Type Basis Sets for the Elements 1–118. *Journal of Computational Chemistry* 2003, 24, 1142-1156.

4. Swart, M.; Bickelhaupt, F. M., Quild: Quantum-Regions Interconnected by Local Descriptions. *Journal of Computational Chemistry* **2008**, *29*, 724-734.

5. Swart, M.; Bickelhaupt, F. M., Optimization of Strong and Weak Coordinates. International Journal of Quantum Chemistry 2006, 106, 2536-2544.

6. Swart, M., Accurate Spin-State Energies for Iron Complexes. Journal of Chemical Theory and Computation 2008, 4, 2057–2066.

7. Swart, M.; Ehlers, A. W.; Lammertsma, K., The Performance of Opbe. Molecular Physics 2004, 102, 2467-2474.

8. Perić, M.; García-Fuente, A.; Zlatar, M.; Daul, C.; Stepanović, S.; García-Fernández, P.; Gruden-Pavlović, M., Magnetic Anisotropy in

"Scorpionate" First-Row Transition-Metal Complexes: A Theoretical Investigation. *Chemistry – A European Journal* **2015**, *21*, 3716-3726. 9. Zlatar, M.; Gruden-Pavlović, M.; Schläpfer, C.-W.; Daul, C., Intrinsic Distortion Path in the Analysis of the Jahn–Teller Effect. *Journal of Molecular Structure: THEOCHEM* **2010**, *954*, 86-93.

10. Zlatar, M.; Schläpfer, C.-W.; Penka Fowe, E.; Daul Claude, A., Density Functional Theory Study of the Jahn-Teller Effect in Cobaltocene. *Pure and Applied Chemistry* 2009, 81, 1397–1411.

11. Ramanantoanina, H.; Zlatar, M.; García-Fernández, P.; Daul, C.; Gruden-Pavlović, M., General Treatment of the Multimode Jahn–Teller Effect: Study of Fullerene Cations. *Physical Chemistry Chemical Physics* **2013**, *15*, 1252-1259.

12. Neese, F., Prediction of Molecular Properties and Molecular Spectroscopy with Density Functional Theory: From Fundamental Theory to Exchange-Coupling. *Coordination Chemistry Reviews* **2009**, *253*, 526-563.

13. Phillips, J. J.; Peralta, J. E., Magnetic Exchange Couplings from Noncollinear Perturbation Theory: Dinuclear Cuii Complexes. *The Journal of Physical Chemistry A* 2014, *118*, 5841-5847.

14. García, V. M.; Castell, O.; Caballol, R.; Malrieu, J. P., An Iterative Difference-Dedicated Configuration Interaction. Proposal and Test Studies. *Chemical Physics Letters* **1995**, *238*, 222-229.

15. Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular Electronic-Structure Theory. Wiley: 2008.

16. Noodleman, L., Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. *The Journal of Chemical Physics* **1981**, *74*, 5737-5743.

17. Noodleman, L.; Baerends, E. J., Electronic Structure, Magnetic Properties, Esr, and Optical Spectra for 2-Iron Ferredoxin Models by Lcao-X.Alpha. Valence Bond Theory. *Journal of the American Chemical Society* **1984**, *106*, 2316-2327.

Head-Gordon, M., Characterizing Unpaired Electrons from the One-Particle Density Matrix. *Chemical Physics Letters* 2003, *372*, 508-511.
Staroverov, V. N.; Davidson, E. R., Distribution of Effectively Unpaired Electrons. *Chemical Physics Letters* 2000, *330*, 161-168.

20. Neese, F., Definition of Corresponding Orbitals and the Diradical Character in Broken Symmetry Dft Calculations on Spin Coupled Systems. Journal of Physics and Chemistry of Solids 2004, 65, 781-785.

21. Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K., Ab Initio Computations of Effective Exchange Integrals for H–H, H–He–H and Mn2o2 Complex: Comparison of Broken-Symmetry Approaches. *Chemical Physics Letters* **2000**, *319*, 223-230.

22. Haaland, A., The Molecular Structure of High-Spin Manganocene, (N-C5h5)2mn, by Gas Phase Electron Diffraction: A Rerefinement. *Inorganic and Nuclear Chemistry Letters* **1979**, *15*, 267-269.