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Abstract 

In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC 

electrodes in 1.0 mol dm
-3

 H2SO4 at 25 °C. Ti2AlC was found to be a highly stable substrate in 

sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which 

was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and 

anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by 

cycling the potential of Ti2AlC in the solution containing 0.01 mol dm
-3

 RuCl3 + 0.1 mol dm
-3

 

H2SO4 between -0.5 V and 0.4 V vs. saturated calomel electrode (SCE) at the sweep rate of 20 

mV s
-1

. Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru 

electrodeposition. Characterization of samples was performed by scanning electron microscopy 

(SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was 
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determined by atomic force microscopy (AFM). It was found that the most compact sample with 

the thickness of about 0.42 µm was obtained after 5 cycles. Electrochemical impedance 

spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC 

electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec
-1

 was 

observed on all polarization curves in the range of high cathodic current densities. Based on the 

formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested. 

 

Key words: Ti2AlC; electrodeposited Ru; H2 evolution; acid solution; electrochemical 

impedance spectroscopy; cyclic voltammetry. 

 

1. Introduction 

Although the discovery of electrolytic water decomposition was first observed in acidic 

water [1], the electrode materials for water electrolysis were mainly developed for alkaline 

electrolytes, due to the fact that electrode materials for water electrolysis in acid electrolytes are 

mainly the noble metals, which are very expensive. Typical polymer electrolyte membrane water 

electrolyzers (PEMWEs) operating in acidic environments employ the Pt catalyst loaded on the 

carbon black support at the cathode side [2]. Besides Pt, one of the most investigated HER 

catalysts are the Ru based materials, namely Ru oxides, which display excellent activity for the 

HER both in alkaline [3-8] and acidic media [7,9-14]. However, widely used carbon supports, 

although possessing a high surface area and sufficient electronic conductivity, are prone to 

corrosion and degradation during the electrolysis, which has a detrimental effect on the 

performance of the Pt/C catalyst layer and increases the overall production costs. Consequently, 

further research effort regarding the development of more durable and efficient supporting 

materials for HER electrocatalysts in PEMWE conditions is required. 

Promising substrate materials were found to be the MAX phases. The MAX phases, 

M(n+1)AXn ternary carbides and nitrides (where M is an early transition metal, A is an A group 

element, X is C, N and nD1–3) belong to the family of more than 50 layered hexagonal (space 
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group P63/mmc) compounds [15,16]. It is fairly well established by now that these phases 

belong to a new class of solids with an unusual, and sometimes unique, set of properties [15,17-

19]. Some of them, like Ti2AlC, are exceptionally oxidation resistant and are candidate materials 

for high temperature structural industrial applications [20,21]. They are excellent electrical and 

thermal conductors. Unlike early transition metal binary carbides, they are all relatively soft 

(Vickers hardness ≈ 2 to 5 GPa), most readily machinable [22] and can be easily fabricated and 

machined in any desired shape [15,16]. 

Recently, corrosion behavior of the MAX phases has drawn attention of the research 

community because some of them form stable passive layers in different acidic and alkaline 

solutions with no applied current/potential [23,24], while some of them exfoliate forming 2D 

binary carbides (MXenes) [25,26]. Exfoliation was found to be typical for Ti3AlC2 after 

prolonged exposure to 10% HF solution. The first comprehensive study on corrosion response of 

one of the MAX phases, namely Ti3SiC2, in HCl and H2SO4 [27,28] showed that in both acids, 

under open circuit conditions as well as at high anodic potentials, Ti leaches out from the 

substrate, while Si oxidizes in situ to form a SiO2-based oxide that passivates the surface. In the 

case of Ti3GeC2, the passive layer was found to be GeO2 [29]. 

Corrosion behavior of Ti2AlC, (Ti,Nb)2AlC, V2AlC, V2GeC, Cr2AlC, Ti2AlN, Ti4AlN3, 

Ti3SiC2 and Ti3GeC2 in 1 mol dm
-3

 NaOH, 1 mol dm
-3

 HCl and 1 mol dm
-3

 H2SO4 solutions has 

also been investigated in the work by Jović et al. [30]. Polarization characteristics in 1 mol dm
-3

 

NaOH reported in that study showed that V2AlC, V2GeC and Cr2AlC underwent active 

dissolution at potentials more positive than the corrosion potential, while Ti2AlC, (Ti,Nb)2AlC, 

Ti3SiC2 and Ti3GeC2 passivated. On the other hand, in 1 mol dm
-3

 HCl solution, Ti2AlC, V2AlC 

and V2GeC actively dissolved, while Ti3SiC2 and Ti3GeC2 passivated. Depending on potential, 

(Ti,Nb)2AlC and Cr2AlC showed trans-passive behavior. In 1 mol dm
-3

 H2SO4 solution, Ti2AlC, 

(Ti,Nb)2AlC, Ti3SiC2 and Ti3GeC2 passivated, V2AlC and V2GeC showed active dissolution, 
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while Cr2AlC exhibited trans-passive behavior. Ti2AlN and Ti4AlN3 were found to be passive in 

all solutions except in 1 mol dm
-3

 HCl, where Ti2AlN showed trans-passive behavior. 

In this work an attempt was made to electrodeposit Ru layers onto Ti2AlC substrates and 

investigate the HER on such coatings in 1.0 mol dm
-3

 H2SO4 solution. To the best of our 

knowledge, this is the first study to report the application of the Ti2AlC MAX phase as a 

substrate material in the HER electrocatalysis. 

 

2. Experimental 

2.1. Preparation of dense Ti2AlC 

Spark Plasma Sintering (SPS25-10, Thermal Technology LLC, USA) was used to fabricate 

high density samples from MAXthal 211 commercial powder (Sandvik Heating Technology, 

Sweden). In short, the as-received powders were mounted in a graphite die and placed inside the 

SPS chamber. The sample was heated to 1300°C at 50°C min-1 for 15 minutes under an applied 

pressure of 100 MPa and cooled near to room temperature at a rate of 50 °C min
-1

. The density of 

the sintered samples was >98% of theoretical, measured by the alcohol immersion method (200 

proof ethanol) based on Archimedes’ principle, using the procedure that is described in more 

detail elsewhere [31,32]. X-Ray diffraction (XRD) and scanning electron microscopy (SEM) 

results (not shown here) confirmed that samples contained around 7 vol% of impurities, mostly 

TiAlx and Al2O3, which were also present in as-received powders. The average grain length of 

4.2 ± 2.5 µm and thickness of 2.1 ± 1 µm was measured from SEM images of the polished and 

etched samples.  

 

2.2. Preparation of Ru layers on Ti2AlC 

Rectangular Ti2AlC substrate samples with a thickness of 2 mm were connected to the Pt 

wire on the back side using silver paste and sealed in epoxy resin, so that only the front surface 

was exposed to the solution. Before Ru electrodeposition, the surface of Ti2AlC substrates was 
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subsequently polished with emery papers 600, 1200, 2400 and 4000 and kept in an ultrasonic 

bath for 10 min to remove traces of polishing. Ru layers were electrodeposited by cycling the 

sealed Ti2AlC substrate from -0.5 V to 0.4 V vs. SCE at the sweep rate of 20 mV s
-1

 in the 

solution containing 0.01 mol dm
-3

 RuCl3 + 0.1 mol dm
-3

 H2SO4 [33]. Four samples, obtained at 

5, 10, 15 and 20 cycles, were prepared and marked as Ru5, Ru10, Ru15 and Ru20 in the text, 

respectively. 

 

2.3. Physicochemical characterization 

The X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and 

electrochemically oxidized Ti2AlC samples was carried out on a PHI-TFA XPS spectrometer 

(Physical Electronics Inc.) in ultra-high vacuum. The analyzed area was approximately 0.4 mm 

in diameter and was about 3-5 nm deep. Sample surfaces were excited by X-ray radiation from a 

monochromatic Al source at photon energy of 1486.6 eV. Quantification of surface composition 

was performed from XPS peak intensities taking into account relative sensitivity factors 

provided by the instrument manufacturer [34]. In order to analyze in-depth distribution of 

elements in the sub-surface region extending up to 50 nm below the surface, the XPS depth 

profiling was performed in combination with ion sputtering. The Ar ions of energy 3 keV were 

used. The velocity of the ion sputtering was estimated to be 2.0 nm/min calibrated on the Ni/Cr 

multilayer structure of a known thickness. 

The surfaces of the Ru5, Ru10, Ru15 and Ru20 samples were investigated by SEM 

(Tescan VEGA TS 5130MM), while the thickness of each Ru electrodeposit was determined by 

AFM, NanoScope 3D (Veeco, USA) microscope operated in contact mode under ambient 

conditions. Silicon nitride probes with the spring constant of 20-60 N/m were used in this 

analysis. The thicknesses of the coatings (d) were determined at four different positions and the 

average values are presented.  
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2.4. Electrochemical measurements and solutions 

Electrochemical measurements were performed onto Ti2AlC and Ru5, Ru10, Ru15 and 

Ru20 samples in a 1.0 mol dm
-3

 H2SO4 solution in extra pure UV water (Smart2PureUV, TKA) 

at 25 °C. A three-compartment cell was used. The working electrode was placed in a central 

compartment together with the Luggin capillary, while a Pt mesh counter electrode of a larger 

surface area was placed in a separate compartment (parallel to the working electrode), so that 

oxygen evolved at the counter electrode could not enter the working electrode compartment. The 

SCE was placed in a side compartment connected to the central one through a bridge and a 

Luggin capillary, and was kept at the room temperature. All values of potential in the text are 

given versus the SCE (ESCE = +0.244 V vs. the standard hydrogen electrode (SHE) at 25 °C). 

Experiments were performed using the potentiostat Reference 600 and the software PHE 200 and 

DC 105 (Gamry Instruments). All samples were first submitted to the HER at a constant current 

density j = -0.3 A cm
-2

 for 800 s (step 1), followed by the HER at a constant potential for 60 s 

(step 2). The value of potential in step 2 was adjusted to produce a cathodic current density 

slightly higher than -0.3 A cm
-2

. After such pre-electrolysis, polarization curves were recorded 

by sweeping the potential with 1 mV s
-1

 from the potential applied in step 2 to the value slightly 

more positive than the open circuit potential (OCP). Potential was automatically corrected for the 

IR drop using the current interrupt technique. 

EIS measurements were conducted with the same potentiostat and EIS 300 software, 

applying the amplitude of 5 mV RMS in the frequency range from 10 kHz to 0.01 Hz with 20 

points per decade. EIS spectra were recorded at five different potentials for each sample. The 

real (Z') and imaginary (Z") components of electrochemical impedance spectra in the Nyquist 

plot were analyzed using the complex nonlinear least squares (CNLS) fitting program (EIS 300) 

to simulate the equivalent resistances and capacitances.  

 

3. Results and Discussion 
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3.1. Characterization of Ti2AlC substrates 

Ti2AlC substrates were tested in a 1.0 mol dm
-3

 H2SO4 solution by recording polarization 

curves in a wide range of potentials negative and positive of the OCP, i.e. from -1.00 V to 2.00 

V. The typical polarization curve is shown in Fig. 1. As can be seen, the OCP was established at 

a potential of -0.25 V, almost equal to the equilibrium potential of the hydrogen reaction. 

However, it is obvious that Ti2AlC exhibits poor HER activity in an acidic medium. The HER on 

Ti2AlC was characterized by a Tafel slope of -120 mV dec
-1

, reaching a current density of about 

-400 mA cm
-2

 at potentials as negative as -1.00 V. At the same time, Ti2AlC was found to be 

very stable during the HER, since neither hydride formation nor surface destruction was 

observed after prolonged hydrogen evolution. For example, after 10 days of hydrogen evolution 

in 1.0 mol dm
-3

 H2SO4 at a current density of -300 mA cm
-2

, no SEM (not shown here) visible 

changes were recorded on the surface of Ti2AlC. At potentials more positive than the OCP, 

Ti2AlC displayed typical passivation behavior up to the higher potential limit of 2.00 V [30], 

characterized by a passivation current density of about 100 µA cm
-2

 (Fig. 1). It appears that the 

thin oxide film formed at anodic potentials suppresses oxygen evolution, as well as the corrosion 

of Ti2AlC electrodes in 1.0 mol dm
-3

 H2SO4 solution. 

It has been documented that one of the main reasons for decreasing activity and stability of 

HER cathodes under long term operation in industrial chlor-alkali electrolysis systems is the 

occurrence of reversed polarity of the electrodes, which takes place during the replacement of 

old electrodes of the zero-gap electrolyzer cells with the new ones. When this procedure is 

applied to one set of the cells, anodes and cathodes of the rest of cells are short-circuited, causing 

a reverse current flow [35-37]. Under such conditions, high anodic potentials are established on 

nominal cathodes in the electrolyzer, which can damage the cathode materials and cause a loss in 

their activity for the HER. Similar behavior of HER cathodes might be expected during the 

electrode replacement procedure in PEMWE systems. In order to determine the composition of 

Ti2AlC surface layers formed under reversed polarity conditions, XPS analysis was performed 
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on two Ti2AlC samples: the as-prepared one and the Ti2AlC sample subjected to a potential of 

2.0 V in 1.0 mol dm
-3

 H2SO4 for 1 hour. Figure 2 shows XPS depth profiles (concentration of 

elements as a function of depth) of the surface region for the non-treated (a) and the anodically 

treated sample (b). The surface of both samples was covered by a 2 nm thick carbon-rich layer. 

However, the non-treated sample had a much higher concentration of C at the surface (71 at.%), 

which can be attributed to the existence of a contamination layer on this sample. The C 

concentration was comparatively lower at the anodically treated sample (40 at.%), most probably 

as a consequence of oxidative removal of carbon-based species from the sample surface. Beneath 

the carbon-rich layer an oxygen-containing layer was present with the maximum concentration 

of O at a depth of about 3 nm for both samples. In the anodically treated sample the maximum 

was higher (51 at.%) than in the as-prepared sample (46 at.%). At greater depths the level of the 

O concentration decreases for both samples, but the O content in the inner part of the anodically 

treated sample was markedly higher than that for the as-prepared sample. This confirms that the 

surface region of Ti2AlC was oxidized during the anodic polarization treatment. Interestingly, 

the curves for the O concentration do not decrease to 0 at.% with increasing depth as one would 

expect for the inner part of the samples, especially for non-treated Ti2AlC. The phenomenon of 

O incorporation in the Ti2AlC has been theoretically predicted and calculated [38-40], as well as 

experimentally documented [41,42] in the literature. Hence, we cannot estimate the exact 

thickness of the oxide-containing layers from the XPS depth profiles, but only conclude that the 

oxide region on the anodically treated sample was thicker. As can be seen from Fig. 2, the 

concentration curves for Ti, Al and C follow expected behaviour inside the bulk of the samples. 

A slight discrepancy of the concentration curves from the stoichiometric ratio for Ti2AlC may be 

an artefact of the XPS method (due to the presence of TiAlx and Al2O3 impurities), related to 

preferential sputtering of some elements from the surface during depth profiling and a 

modification of the analyzed composition.  
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 Detailed analyses of the XPS spectra Ti 2p, Al 2p and C 1s, presented in Fig. 3, suggest 

that Ti atoms were oxidized in the surface region of both samples (Ti 2p peak at 458.6 eV), but 

beneath this layer the Ti atoms were bonded in carbide characterized by Ti 2p binding energy of 

454.5 eV (Fig. 3a) [34,43]. The Al atoms on the surface of both samples were also mainly 

oxidized (Al 2p peak at 74.3 eV) (Fig. 3b). Unfortunately, the chemical sensitivity of the XPS 

method is not high enough to distinguish the binary compound Ti-Al-oxide from Ti-oxide/Al-

oxide to determine more precisely the nature of the thin oxide layer. In addition, a small peak 

emerging at ~ 71.8 eV in the Al 2p spectra originates from the Al-carbide species from a deeper 

subsurface region [43]. The XPS carbon spectra C 1s from the surface of both samples (Fig. 3c) 

have the most intense peak at 284.8 eV related to the C-C/C-H bonds, but deeper than 2 nm all 

carbon atoms were bounded in carbides (C 1s peak at 281.5 eV) [43]. 

 It can be concluded that the structure of Ti2AlC is maintained under anodic polarization 

in sulphuric acid solutions, since active dissolution of Ti and Al is prevented by the formation of 

a thin, stable oxide layer at the surface. Such behavior indicates that Ti2AlC could be a good 

substrate material for application in the HER electrocatalysis in H2SO4 solutions. Hence, Ti2AlC 

was chosen as a substrate for electrodeposition of electrocatalytic Ru coatings. 

 

3.2. Electrodeposition of Ru films 

Following the procedure explained in Ref. [33] for electrodeposition of nanometric layers 

of Ru on glassy carbon substrates, four Ru/ Ti2AlC samples, electrodeposited with 5, 10, 15 and 

20 cycles at 20 mV s
-1

, were prepared. In Fig. 4 are shown CVs corresponding to the preparation 

of samples with 5 (a) and 20 (b) Ru electrodeposition cycles (samples Ru5 and Ru20, 

respectively). Since the HER proceeds at potentials more negative than -0.3 V (equilibrium 

potential for the hydrogen reaction in 0.1 mol dm
-3

 H2SO4), the electrodeposition of Ru took 

place together with the HER. It can be seen that the maximum cathodic current density at the 

lower potential limit of -0.50 V and the voltammetric responses at potentials positive than -0.25 
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V (insets) increased with the number of performed cycles, indicating an increase in both the 

amount of electrodeposited Ru and its surface area.  

 

3.3. Microstructure characterization of Ru/Ti2AlC samples 

The surface microstructure of samples Ru5, Ru10, Ru15 and Ru20 can be seen in SEM 

images shown in Fig. 5. All Ru/Ti2AlC samples were characterized by the presence of uncovered 

Ti2AlC substrate surfaces and/or holes in the Ru coating, as illustrated in Fig. 5a for sample Ru5. 

The holes presumably emerged at positions corresponding to entrapped hydrogen bubbles, but 

their appearance could also be related to the presence of impurities at the Ti2AlC surface (Ti2AlC 

purity was 93%) suppressing the Ru electrodeposition or causing poor adhesion of Ru deposits. 

The Ru deposit obtained for the lowest number of cycles was the most compact (Fig. 5b), but as 

the number of electrodeposition cycles increased, the cracks in the Ru coatings became more 

pronounced and larger parts of the Ru film peeled off from the Ti2AlC substrate (Fig. 5c-h). This 

behavior is most probably the consequence of high residual stresses in the Ru coatings of higher 

thickness, promoted by intensive hydrogen evolution during the CV electrodeposition of Ru. 

AFM analysis was employed in order to estimate the thickness of the Ru coatings. After 

detecting an uncovered Ti2AlC substrate surface or a hole in the coating (see surface plots), 

section analysis was performed and the thickness of the Ru coating was measured. Two 

examples are shown in Fig. 6, for samples Ru5 (a-c) and Ru20 (d-f). The thickness of the 

coatings (d) was determined at four different positions and the average values (dav) are presented 

in Table 1. As can be seen, the thickness of the Ru coatings increased with increasing the number 

of cycles for their electrodeposition, reaching almost 3 µm for Ru20. At hole-free surfaces of the 

coatings, the average height between the lowest and the highest point in the profile was about 60 

nm for sample Ru5 and about 500 nm for sample Ru20, confirming that the roughness of Ru 

electrodeposit also increased with the number of cycles. 
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3.4. CV characterization of Ru/Ti2AlC samples 

Cyclic voltammetry characterization of the electrodeposited Ru film samples was 

performed in a 1.0 mol dm
-3

 H2SO4 solution at 25 °C by recording CVs at a sweep rate of 20 mV 

s
-1

 in the potential range from -0.25 to 0.40 V corresponding to the reversible Ru oxide formation 

[44]. The obtained CVs presented in Fig. 7a are very similar to those recorded on the bulk Ru 

electrodes in sulfuric acid solutions [44]. Well-defined peaks corresponding to underpotential 

hydrogen adsorption/desorption on/from metallic Ru [44] could be detected between -0.25 V and 

0.0 V. It can be clearly seen that the peaks increased with the increasing number of 

electrodeposition cycles, indicating an increase of the electrochemically active surface area of 

electrodeposited Ru, as it was also suggested by the AFM analysis. After correction of measured 

voltammetric current densities for the roughness factor (rf – see Section 3.5.), the CVs for 

different Ru/Ti2AlC samples practically overlapped (Fig. 7b), confirming the dominant influence 

of surface roughness on the voltammetric responses. 

 

3.5. EIS analysis of the HER 

EIS measurements were performed on all four Ru/Ti2AlC samples at five different 

potentials: -0.28, -0.30, -0.32, -0.33 and -0.34 V, covering a HER current density range from 

about -1 mA cm
-2

 to about -50 mA cm
-2

. Figure 8 shows Nyquist plots recorded at potentials E = 

-0.28 V (a) and -0.34 V (b) for all samples, and Nyquist plots recorded on sample Ru15 at all 

five selected potentials (c). Experimental points are presented with symbols (squares, circles, 

triangles etc.), while theoretical curves obtained from the modeling are presented with lines. The 

Nyquist plots recorded at less negative potentials (-0.28 V in particular) possess two well-

defined semicircles, while those recorded at more negative potentials are characterized by only 

one apparent arc or semicircle (except for Ru15), as illustrated in Fig. 8. The best fits for all 

samples at less negative potentials were obtained using the equivalent circuit presented in Fig. 

9a, typical for the HER [45]. The HER kinetics-related part of this circuit consists of elements 
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Rp║CPEp in series with Rct, where the resistance Rp and the constant phase element CPEp 

represent parameters associated with the relaxation of the adsorbed reaction intermediate upon 

potential perturbation [46], and Rct is the charge transfer resistance. The remaining two elements 

in the circuit are the constant phase element CPEdl, which usually replaces Cdl on solid 

electrodes, and the solution resistance Rs. The impedances of CPEdl and CPEp are given as: 

ppdldl

)(

1
;

)(

1

p

CPE

dl

CPE 
 jY

Z
jY

Z         (1) 

where Ydl and Yp are capacitance parameters (in 
-1

 cm
-2 

s
α
), and αdl and αp are parameters 

associated with a constant phase angle φ = –(90α)°, which may have a value between 0 and 1.  

This model predicts the occurrence of two semicircles: one at high frequencies originating from 

the elements Rct║CPEdl, and the other at low frequencies corresponding to the elements 

Rp║CPEp (Fig. 8a). At more negative potentials the contribution of parameters Rp and Yp (CPEp) 

to the total impedance response was negligible for most samples, so the model used for fitting 

was reduced to the simple Randles circuit presented in Fig. 9b. Only the impedance spectra of 

sample Ru15 displayed the characteristics of two time constants at all potentials (Fig. 8c) and 

were successfully fitted with the more complex equivalent circuit (Fig. 9a). Parameters obtained 

from the fitting procedure are presented in Table 2. 

Values of Cdl were calculated using the equation [47]: 

dl

dl

/1

)1(

cts

dldl )
11

(

















RR
YC         (2) 

The dependence of Cdl on potential for various Ru/Ti2AlC samples is graphically presented 

in Fig. 10a. It can be observed that Cdl of all electrodes were constant in the investigated 

potential range, indicating an efficient detachment of evolved hydrogen bubbles from the Ru 

electrode surface. The obtained values for Cdl confirm that repetitive electrodeposition cycling 

produced Ru films with increasing surface roughness. In order to estimate the average roughness 

factor for the samples, calculated values of Cdl were divided by 20 µF cm
-2

 (the value of an 
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ideally flat electrode [48]) and corresponding results are given in Table 1 as rf. It can be seen that 

the real surface area of the sample obtained after 20 cycles exhibited a four-fold increase 

compared with that of the sample obtained after 5 cycles. 

The reciprocal value of the faradaic resistance, 1/RF (RF = Rct + Rp), can be regarded as a 

direct measure of the electrode activity for the HER. Figure 10b shows the E vs. log RF
-1

 

dependences obtained for all samples from the EIS data analysis. In all cases linear dependences 

were observed, characterized by a slope of about -75 mV dec
-1

. The parallelism of E vs. log RF
-1

 

dependences once again points out to the surface roughness effect as the main reason for slight 

differences in apparent HER activity among the Ru/Ti2AlC electrodes. 

 

3.6. Polarization curves for the HER 

Steady-state polarization curves for the HER recorded on the Ru/Ti2AlC samples in 1.0 

mol dm
-3

 H2SO4 at 25 °C are shown in Fig. 11a. All samples exhibited very high catalytic 

activity for the HER, reaching a cathodic current density of -100 mA cm
-2

 in the narrow range of 

overpotentials between -126 mV (Ru5) and -97 mV (Ru15). The polarization curves for all 

investigated samples are characterized by a Tafel slope of about -60 mV dec
-1

 at cathodic current 

densities higher than -10 mA cm
-2

 (see inset) and an exchange current density of 1-2 mA cm
-2

. 

Figure 11b shows the polarization curves normalized to the real surface area of Ru by dividing 

measured current densities by the corresponding rf value. Expectedly, after rf correction the Tafel 

region segments of the curves are lying close to each other, distributed randomly and 

independently of the number of electrodeposition cycles. Kinetic parameters for the HER 

determined from the polarization curves for different Ru/Ti2AlC samples are listed in Table 3. 

The Tafel slope is an inherent kinetic property of the electrode material in a given solution, 

which allows an assessment of the reaction mechanism. In general, the HER on metallic 

electrodes in acidic solutions proceeds through a combination of three elementary steps. The 

primary step is always the electrochemical adsorption of H atoms (Volmer step): 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

14 

adsHMeHM            (3) 

which is followed by the electrochemical desorption step (Heyrovsky step): 

2ads HMeHHM           (4) 

and/or the chemical desorption step (Tafel step): 

2adsads H2MHMHM          (5) 

Assuming that the reaction follows the Volmer-Heyrovsky pathway and that hydrogen 

adsorption takes place under Langmuir conditions, theoretically two different slopes could be 

observed on the Tafel plots depending on the rate-determining step (RDS) and surface coverage 

by Hads: only one slope of -120 mV dec
-1

 over the entire overpotential range when the Volmer 

reaction is a RDS, or -40 mV dec
-1

 at lower overpotentials (θH→0) and -120 mV dec
-1

 at higher 

overpotentials (θH→1) when the Heyrovsky step is the rate-determining one. Hence, the presence 

of a Tafel slope of about -60 mV dec
-1

 cannot be explained by a general HER mechanism. It 

suggests the existence of an additional step in the mechanism, which controls the overall 

reaction: 

            (6) 

            (7) 

            (8) 

Step (7) represents the surface chemical rearrangements that involve two adsorbed intermediates 

possessing the same structure, but different energy levels. For low surface coverage by the 

inactive H
*
ads intermediate, the Volmer step is in quasi-equilibrium and potential dependence of 

θH can be expressed by the following equation: 









 

 RT

FE
c

k

k
exp

H
1

1
H          (9) 

in which k1 and k-1 are the rate constants of the forward and backward Volmer reaction, 

respectively, and c the concentration of H
+
 ions in the solution. The overall reaction rate is then: 

*

adsHMeHM  

ads

*

ads HMHM 

2ads HMeHHM  
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







 

 RT

FE
c

k

k
FkFkj exp22

H
1

1
2H2        (10) 

where k2 is the rate constant of the rate-controlling surface rearrangement step. For T = 298 K, it 

yields a Tafel slope bc ≈ -60 mV dec
-1

. 

 There are only few papers in literature regarding the kinetics and mechanism of the HER 

on metallic Ru in acidic solutions, providing somewhat diverse results. Fleischmann and 

Grenness [49] studied the HER in 1 mol dm
-3

 H2SO4 after depositing Ru onto vitreous carbon 

and reported the values of the Tafel slope that were close to -60 mV dec
-1

, but increased to -90 

mV dec
-1

 for smaller amounts of electrodeposited Ru. They discovered that the HER rate 

depended upon the size of the Ru electrocatalyst centers and, similarly to our conclusions, 

suggested the surface diffusion of hydrogen from one type of site to the other as a rate-

determining step. Bagotzky et al. [50] obtained a Tafel slope of -70 mV dec
-1

 for the HER on 

bulk Ru electrodes in 1 mol dm
-3

 H2SO4. In contrast to that, Breiter [51] found that bc had a 

value of -120 mV dec
-1

 at larger cathodic current densities on Ru foil electrodes in sulfuric acid 

solutions and proposed the Volmer mechanism for the HER. The studies performed in HCl 

solutions also showed higher values of Tafel slopes, e.g. -120 mV dec
-1

 for bulk Ru [52] or -140 

mV dec
-1

 for the Ru nuclei deposited onto Hg [53]. It seems that a mechanism of the HER on 

metallic Ru electrodes in acidic media strongly depends on a number of factors, including the 

cathode preparation method, surface pretreatment and selection of an electrolyte. 

 The Ru/Ti2AlC electrodes investigated in the present study exhibited superior catalytic 

activity for the HER in acidic media compared with other Ru-based cathodes in literature [7,9-

14]. Most of the cathodes employing RuO2 as an electrocatalytic material for the HER attained 

the current density of -100 mA cm
-2

 in the overpotential range from about -200 mV to -250 mV 

[9-13], approximately 100 mV negative with respect to Ru/Ti2AlC. The overpotential at -100 

mA cm
-2

 measured on highly porous Ni + RuO2 composite coatings electrodeposited from 

NH4Cl nickel baths with suspended RuO2 particles was -150 mV in 0.5 mol dm
-3

 H2SO4 [7]. 
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Cathodes composed of RuOx nanoparticles deposited on high surface area TiO2 nanotube arrays 

showed the HER overpotential of -190 mV in 1 mol dm
-3

 HClO4 [14]. Such an impressive 

catalytic performance of the Ru/Ti2AlC electrodes is comparable to that of commercial Pt/C 

catalysts [54-57]. 

 Among all the Ru/Ti2AlC electrodes we can mark sample Ru5 as the most promising 

cathode for the application in industrial conditions. This sample exhibited a slightly lower 

activity for the HER than Ru15, but at the same time it possessed a compact microstructure, 

without the presence of cracks or parts of Ru films that peel off from the substrate, which implies 

its stability during the long term operation. The employment of Ru/Ti2AlC electrodes obtained at 

a lower number of Ru electrodeposition cycles is also economically more favorable, because the 

amount of costly Ru loaded on the Ti2AlC substrate in the fabrication procedure is reduced to a 

minimum. In perspective, the electrocatalytic activity of Ru/Ti2AlC electrodes can be further 

improved by depositing nanometer-scale thin films of Ru on porous Ti2AlC substrates of highly 

developed surface. 

 

4. Conclusions 

In this study conductive Ti2AlC structures were for the first time used as substrate 

materials in the electrocatalysis of the HER in acidic media. Their excellent stability under 

anodic polarization in sulfuric acid solutions was attributed to the formation of a thin, passivating 

oxide layer on the surface. It was shown that electrocatalytic Ru layers can be electrodeposited 

onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol 

dm
-3

 RuCl3 and 0.1 mol dm
-3

 H2SO4 at a sweep rate of 20 mV s
-1

. As the number of cycles 

increased from 5 to 20, the thickness of the Ru coatings increased from 0.42 µm to 2.8 µm, 

whereas the real surface area of the Ru/Ti2AlC samples increased four times. The most compact 

Ru deposit was obtained for 5 electrodeposition cycles, but as the cycling progressed, cracks 
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started to appear at the coating surface and the Ru films partially peeled off from the Ti2AlC 

substrate. 

All Ru/Ti2AlC electrodes exhibited exceptionally high catalytic activity for the HER in 1.0 

mol dm
-3

 H2SO4 at 25 °C. At a current density of -100 mA cm
-2

 the HER overpotential recorded 

on Ru/Ti2AlC samples varied from -97 mV to -126 mV depending on their surface roughness. 

The Tafel slope of about -60 mV dec
-1

 observed with all samples at large cathodic current 

densities was explained by a HER mechanism that predicts the surface rearrangement of 

adsorbed hydrogen intermediates as a RDS. 
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Figure captions: 

Fig. 1. Polarization curve recorded on Ti2AlC in 1.0 mol dm
-3

 H2SO4 at 25 °C by sweeping the 

potential from -1.0 V to 2.0 V at a rate of 1 mV s
-1

. 

Fig. 2. XPS depth profiles of concentration of different elements (marked in the figure) obtained 

for the surface of: (a) as-prepared Ti2AlC and (b) Ti2AlC subjected to the potential of 2.0 V in 

1.0 mol dm
-3

 H2SO4 for 1 h.  

Fig. 3. XPS spectra of: (a) C 1s, (b) Ti 2p and (c) Al 2p obtained from the surface of non-treated 

and anodically treated (oxidized) Ti2AlC samples. 

Fig. 4. CVs of Ru electrodeposition onto Ti2AlC substrates recorded in the potential range from -

0.5 V to 0.4 V at a sweep rate of 20 mV s
-1

 during the preparation of samples: (a) Ru5 and (b) 

Ru20 (cycle numbers are marked in the figure). Solution: 0.01 mol dm
-3

 RuCl3 + 0.1 mol dm
-3

 

H2SO4. Inset: enhancement of voltammetric responses at potentials positive than -0.25 V during 

the repetitive cycles of Ru deposition. 

Fig. 5. Morphology of different Ru/Ti2AlC samples: Ru5 – (a) and (b); Ru10 – (c) and (d); Ru15 

– (e) and (f); Ru20 – (g) and (h). 

Fig. 6. AFM analysis of Ru coating thickness. Sample Ru5: (a) surface plot, (b) and (c) section 

analysis (25 µm x 25 µm x 3.5 µm); sample Ru20: (e) surface plot, (f) and (g) section analysis 

(35 µm x 35 µm x 4 µm). 

Fig. 7. CVs recorded on different Ru/Ti2AlC samples in 1.0 mol dm
-3

 H2SO4 at 25 °C by 

applying a sweep rate of 20 mV s
-1

 in the potential range from -0.25 V to 0.4 V corresponding to 

reversible Ru oxide formation at the surface: (a) measured CVs; (b) CVs after correction for the 

surface roughness factor (rf). The total number of electrodeposition cycles for each sample is 

marked in the figure. 

Fig. 8. Nyquist plots recorded at the potentials of: (a) -0.28 V and (b) -0.34 V for all Ru/Ti2AlC 

samples (marked in the figure), and (c) Nyquist plots recorded on sample Ru15 at five different 

potentials (marked in the figure).  
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Fig. 9. Equivalent circuits applied for fitting the impedance spectra for the HER recorded at (a) 

less negative and (b) more negative potentials. 

Fig. 10. Potential dependences of: (a) the double layer capacitance, Cdl, and (b) the total faradaic 

resistance to the HER, RF, obtained from the EIS analysis for different Ru/Ti2AlC samples 

(marked in the figure). 

Fig. 11. (a) Polarization curves for the HER recorded on different Ru/Ti2AlC samples (marked in 

the figure) in 1.0 mol dm
-3

 H2SO4 at 25 °C. Inset: linear fits of the polarization curves in the 

range of current densities higher than -10 mA cm
-2

 (Tafel slopes). (b) The same polarization 

curves corrected for the roughness factor rf. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Table 1: The average thickness of Ru films on Ti2AlC determined from AFM analysis (dav) and 

the roughness factor of Ru/Ti2AlC samples obtained from EIS analysis (rf). 

 

Sample dav / µm rf 

Ru5 0.42 41 

Ru10 1.85 96 

Ru15 2.45 117 

Ru20 2.82 169 
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Table 2: Parameters obtained from modeling the EIS spectra of various Ru/Ti2AlC samples using 

the equivalent circuits presented in Fig. 9. 

 

Sample E / V Rs /  

cm
2
 

Rp /  

cm
2
 

Yp / mS
 

cm
-2 

s
α
 

p 
Rct /  

cm
2
 

Ydl / mS
 

cm
-2 

s
α
 

dl 

Ru5 

-0.28 0.52 2.84 1.6 0.621 6.66 2.0 0.883 

-0.30 0.52 1.14 1.9 0.520 3.87 1.9 0.893 

-0.32 0.50 - - - 2.64 2.4 0.866 

-0.33 0.50 - - - 1.97 2.3 0.873 

-0.34 0.50 - - - 1.47 2.3 0.875 

Ru10 

-0.28 0.76 1.76 3.0 0.835 4.70 3.7 0.902 

-0.30 0.78 0.35 9.9 0.800 2.68 3.9 0.897 

-0.32 0.82 0.12 7.4 0.860 1.58 3.5 0.917 

-0.33 0.80 - - - 1.26 3.7 0.904 

-0.34 0.80 - - - 1.17 2.3 0.875 

Ru15 

-0.28 0.53 1.61 2.5 0.859 2.40 5.2 0.881 

-0.30 0.49 0.38 3.9 0.927 1.47 5.5 0.880 

-0.32 0.49 0.17 7.0 0.825 0.94 5.1 0.892 

-0.33 0.49 0.08 1150 0.889 0.75 5.4 0.886 

-0.34 0.48 0.06 2600 0.999 0.60 5.6 0.884 

Ru20 

-0.28 0.70 0.95 3.2 0.960 2.63 6.9 0.890 

-0.30 0.65 - - - 1.60 7.4 0.877 

-0.32 0.67 - - - 1.01 7.9 0.867 

-0.33 0.67 - - - 0.76 5.4 0.936 

-0.34 0.65 - - - 0.68 7.0 0.892 
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Table 3: Kinetic parameters for the HER on different Ru/Ti2AlC samples obtained from the 

polarization curves presented in Fig. 11: the Tafel slope, bc, exchange current density, j0, 

overpotential corresponding to the current density of –100 mA cm
-2

, η100, and the area-specific 

activity at the overpotential of –100 mV, (j / rf)100. 

 

 

 

 

 

 

 

 

 

Sample bc / mV dec
-1

 j0 / mA cm
-2

 η100 / mV (j / rf)100 / mA cm
-2

 

Ru5 –64 1.1 –126 –0.96 

Ru10 –70 2.1 –117 –0.59 

Ru15 –58 2.1 –97 –0.96 

Ru20 –56 1.3 –106 –0.46 
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Graphical abstract 
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Research Highlights 

► Ti2AlC was examined as a substrate material for HER electrocatalysts in acid media. 

► It showed excellent stability at high anodic potentials in H2SO4 solutions. 

► Ru films were deposited by cycling the potential of Ti2AlC in RuCl3 + H2SO4 solution. 

► Thickness of Ru films varied from 0.42 to 2.8 µm depending on the number of cycles. 

► All Ru/Ti2AlC electrodes were exceptionally active for HER in 1 M H2SO4 at 25°C. 


