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Abstract  

Present study reports synthesis and physico-chemical evaluation of hydrophobically modified 

pectin derivatives, obtained by reacting of pectin with di-acyl chlorides (glutaryl and sebacoyl 

chloride). Depending on length of the inserted carbon chains, the acylation resulted in 

possible formation of mono-grafted (isolated chains) and bi-grafted (chemical gels) structures. 

The structural features of obtained derivatives were investigated using FTIR spectroscopy, 

confirming the successful synthesis. The concentrated aqueous solutions of modified pectin 

showed interesting rheological properties, having lower values of apparent viscosity 

compared to neat pectin. Since the GPC analysis indicated that no degradation occurred, the 

viscosity decrease was explained by more heterogeneous organization within modified pectin 

solutions (microparticles together with sticky polymer entanglement). A shift in particle size 

distribution proved that proposed modifications also affected pectin solution properties in 

diluted regime. The modified samples turned to be more sensible to thermal degradation than 

neat pectin, whereby the increasing size of flexible acyl chains attached to a polymer 

backbone reduced the glass transition temperature. The hydrophobicity of obtained 

derivatives was evaluated by sessile drop and du Nouy ring methods. It was found that 

acylation enhanced hydrophobicity of the pectin molecule, while hydrophobically associative 

character turned to be inconsistent in aqueous and non-aqueous environment. 

 

Keywords: pectin esterification, hydrophobicity, surface tension  
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1. Introduction 

 

 

Polysaccharides belong to a special class of biopolymers with peculiar features such as 

biocompatibility, biodegradability, bioadhesivity and nontoxicity. The usefulness of these 

water-soluble carbohydrate polymers undoubtedly relies on the wide range of their functional 

properties coupled with wide availability and usually low costs. The research activities related 

to the exploitation of polysaccharides are today spanning many new avenues, which concern 

the development of novel materials to be implemented in a number of domains [1]. Pectin 

forms the most complex class of polysaccharides, mainly composed by high molecular weight 

heterogeneous groups of glycanogalacturonans and acidic structural polysaccharides with 

diverse structures. Pectin backbone consists of (1→4)-α-D-galacturonic acid residues, some 

of which are partially methylesterified. The degree of esterification (DE) of the galacturonic 

acid residues has a determinant influence on the physico-chemical properties of pectins, 

mainly in terms of complexation and gel formation [2]. Having excellent gelling, stabilizing 

and film forming properties, pectin has been recognized as an attractive novel biopolymer 

material, which can be successfully employed in food and pharmaceutical industry, health 

promotion and cosmetic applications [3]. Being recognized as “green’’, pectin represents a 

suitable polymer for the development of bio-based packaging films. Furthermore, the FDA 

regards pectin as generally safe (GRAS), so this polymer can afford low-calorie edible films 

and coatings. Still, pectin based materials are far from being adequately exploited due to 

certain limitations when applied in some specific areas. For example, the tendency of forming 

lumps and agglomerations causes a serious problems during dissolving [4]. Extremely high 

hydrophilicity of pectin molecule causes rapid hydration, swelling and erosion and reduces 

the ability to control drug release efficiently in different dosage forms [5].  The hydrophilic 

nature also has undesirable influence on the barrier properties of pectin based films due to 

ineffective moisture transfer [6].Therefore, the functionality of pectin often needs to be 

strengthened or altered to satisfy specific applicative requirements. Numerous hydroxyl and 

carboxyl groups distributed along the backbone, as well as a certain amount of neutral sugars 

present as side chains make this polysaccharide a suitable candidate for chemical and physical 

treatments. Based on distinct reaction methods,  chemical modification of pectin may be 

conducted in various ways, including substitution (alkylation, amidation, quaternization, 

thiolation, sulfation, oxidation, etc.), chain elongation (cross-linking and grafting) and 

depolymerization (chemical, physical, and enzymatic degradation) [3].The properties of 

pectin could be also improved by physical modification which involves noncovalent bonding, 

such as ionic interactions, hydrogen bonds or hydrophobic interactions[7]. Physical cross-

linking represents one of the prime techniques used for the modification of pectin and it has 

been successfully applied for the enhancement of its mechanical and barrier properties as well 

as its water resistance [8].   

Hydrophobically modified derivatives of pectin have been gaining ground for the last decade. 

An introduction of non-polar residues increases hydrophobic character of pectin 

macromolecules, offering divergency in physicochemical properties. Alkylation of carboxyl 

functions was proved to be a successful method for such modifications [9, 10]. It was found 
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that derivatives carrying long alkyl chains showed interesting behaviour which can be used 

for control of aqueous phases’ rheological properties [11]. Polymers bearing shorter alkyl 

groups may also present some interesting properties notably at  interfaces [12]. Moreover, it 

was evidenced that intramolecular and/or intermolecular (aggregates) specific ‘hydrophobic’ 

interactions could exist in dilute solution [13]. Slightly substituted polymers with surface-

active properties can be valorized in different ways, so deeper understanding of the specific 

features adopted by hydrophobic derivatives of pectin could be essential from application 

point of view. 

Seeking after improved functionality, the aim of this work was synthesis and detail evaluation 

of structural (FTIR, GPC), bulk (DSC, TGA) and macroscopic properties (particle size 

distribution and surface properties) of hydrophobically modified pectin. Targeting saccharide 

oxygen as a nucleophile, modifications were performed via esterification of alcoholic 

functions using chlorides of dicarboxylicacids: glutaric and sebacic. The insertion of the di-

acyl residues of different carbon chain length was expected to enhance hydrophobic nature of 

the molecule, whereby mono-grafted (isolated chains) or bi-grafted (chemical gels) products 

are possible to obtain. Calculated per single galacturonic acid unit, the extent of modification 

is given in terms of the molar ratios of the reactants, 1:3 and 1:15, meaning that every third 

and fifteenth unit was acylated. The special emphasis is put on how the resulted structural 

changes affected water-polymer interactions.  

 

2. Experimental  

2.1 Materials  

High-methoxyl apple pectin (70–75% DE), glutaryl chloride and sebacoyl chloride were 

purchased from Sigma-Aldrich Company. Dimethyl sulfoxide, absolute ethanol, acetone and 

pyridine were supplied by Merck. All chemicals were analytical reagents and used as 

received. 

2.2 Synthesis of acylated derivatives of pectin   

Synthesis of pectin derivatives was carried out via conventional esterification using di-acyl 

chlorides [14]. Prior use, all chemicals were dried under vacuum at 40°C until constant weight 

was obtained. The solution of 1.5 % w/v was prepared by dissolving pectin in DMSO for 24h 

at 60°C. The calculated amount of esterification agent was added dropwise into pectin 

solutions, which previously had been cooled down to 5°C. The pyridine, used to remove 

hydrogen chloride by product and to catalyze the reaction, was added in a stoichiometric 

amount. The mixture was left to react under stirring for 12h at 50°C.  When the reaction was 

completed, the mixture was treated with absolute ethanol, used as precipitant. The separated 

precipitate was washed three times with absolute ethanol under stirring for 1h. Finally, the 

products were washed with acetone. The resulting derivatives were left to dry under vacuum 

at 40°C, to reach constant weight. 
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2.3 Fourier Transform Infrared Spectroscopy (FTIR)  

The FT-IR spectra were recorded on a spectrophotometer Bomem MB100. The thin films, 

obtained by vacuum drying of 1% w/v aqueous solutions, were placed between ZnSe 

windows and spectra were recorded in transmittance mode for the wavelength range of 600– 

4000 cm
-1

 with a resolution of 4 cm
-1

.  

2.4 Gel Permeation Chromatography (GPC) 

The measurements were performed by using a GPC Malvern equipped with a Viscotek TDA 

apparatus with three detectors (refractive index, right angle laser light scattering (90°), low 

angle laser light scattering (9°) and a viscometer). The eluent was water solution containing 

NaN3 0.02% and NaNO3 0.1 M. The flux was 0.5 ml/min with the injection volume of 100 µl. 

The used columns were a pre-column TSK and a mixed TSKgelGMPWxl (Tosoh 

Corporation). The samples were analysed by using a conventional calibration with 9 samples 

of Pullulan with MP ranging between 1220000 and 1000 Da. The concentration of samples 

was about 1.5 – 2.0 mg/mL. All the samples, standard and modified pectins were analysed in 

duplicate. 

2.5 Determination of apparent viscosity 

The investigated solutions (4 % w/v) were prepared by dissolving samples in 0.025 M NaCl 

via gentle stirring for 18h at room temperature and centrifuged (3000 g, 15 min) in order to 

avoid entrapped air bubbles [15]. Polymer solutions had been stored at 4 °C overnight before 

measurements were carried out. Experiments at imposed shear stress were performed on 

Rheometrics, model RMS-605 fitted with a parallel plate geometry (25 mm diameter, 1.0 mm 

gap). Temperature control of a bottom plate (25 ± 0.1C) was achieved with a Peltier system. 

2.6 Thermal analysis  

2.6.1 Differential Scanning Calorimetry (DSC)  

 

Differential Scanning Calorimetry measurements were performed using a TA DSC-Q2000 

instrument equipped with a TA Instruments DSC cooling system under a nitrogen purge gas 

flow of 30 mLmin
−1

. Indium was used to calibrate the calorimeter in temperature and energy. 

Crystallization is an exothermic process, and the heat evolved during the phase transition may 

cause some thermal gradients within the sample. As a consequence, transitions can occur at 

temperatures that do not correspond to those detected by the instrumentation [16]. The thicker 

the sample, the more critical this problem is. In order to reduce these issues, sample mass was 

limited to 6.0 ± 0.5 mg. All the specimens were equilibrated at 0°C and heated up to 100°C at 

20°C min
-1

. Then an isotherm step was performed at 100°C for 30 min in order to remove free 

and bounded water. Afterwards, the samples were cooled to 0°C at 10 °Cmin
-1

, thermally 

stabilized for 1 min and then re-heated up to 200°C at 20°C min
-1

. Each sample was tested 

three times to confirm repeatability of measurements.  
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2.6.2 Thermogravimetric analysis (TGA)  

Thermogravimetric analyses were performed on a Mettler-Toledo TG-SDTA 851 

thermobalance, under nominal nitrogen flow of 30 mLmin
−1

, in a temperature range of 25 - 

600 °C, at a heating rate of 10 °C min
-1

. The measurements were performed on 5 ± 0.5 mg 

samples placed in ceramic crucibles. Each sample was tested three times in order to confirm 

repetition of measurements. 

2.7 Particle size distribution and Optical microscopy 

Particle size distribution was measured by a laser light-scattering particle size analyser 

(Mastersizer 2000; Malvern Instruments). Prior to measurement, the samples were dispersed 

in 0.025 M NaCl solution (25°C), in an ultrasonic bath (at a frequency of 40 kHz and power 

of 50 W), for 3 min. The concentration of samples was 0.5% w/v, and the pH was found to be 

around 3.0. The same solutions were investigated afterwards by means of optical microscopy 

(LEIСA DC 150).  

2.8 Scanning Electron Microscopy (SEM)  

SEM analyses were performed using a Jeol JSM 5800 scanning electron microscope with an 

acceleration voltage of 20 kV. Prior to SEM analysis, the 4% w/v solutions of neat and 

modified pectin were freeze-dried in order to conserve the structure without collapsing. The 

samples were cut in half in frozen state. Before analysis, samples’ cross-sections were 

covered with platinum vapour in a LEICA SCD005 nebuliser.  

2.9 Surface properties measurements 

Surface properties of neat and modified samples were determined in two different approaches: 

water droplet contact with solid film surface (dynamic contact angle measurement) and from 

0.5 % w/v solutions of the investigated samples (du Nouy ring method). 

2.9.1 Dynamic contact angle measurement 

Surface properties of the samples were investigated by contact angle (CA) measurements 

using the sessile drop method. Contact angle is defined as an angle between film surface and 

tangent line at the contact point of water droplet with surface. Measurements were carried out 

in constant temperature using a Theta Optical Tensiometer (Attension, KSV). Contact angles 

were measured by dispensing an approximately 4μL droplet of ultrapure water onto film 

substrate and repeated several times to control reproducibility. The films were casted form 2% 

w/v water solutions of referent (neat pectin) and modified samples.  Prior to measurements, 

the films were dried under vacuum at 40°C until a constant weight was reached [17].   

2.9.2 Du Nouy ring method 

Surface tension of all samples was tested using a du Nouy ring tensiometer (SEO DST 30 

Surface tension metre). For each test, 20 ml of 0.5 % w/v solution was placed in a 50 ml 

beaker. Distance between an immersed ring and liquid surface was fixed at 5 mm to ensure a 

clean meniscus break on the immersed platinum–iridium ring. The circumference (R) of a 
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ring and its dimension ratio (R/R0) were 0.5960 and 53.3906 cm, respectively. Based on the 

input parameters, i.e. ring dimension, sample density and temperature (25°C), calculations 

were made by  a tensiometer pre-programmed software [18]. 

 

3. Results and Discussion 

3. 1 Preparation of acylated pectin derivatives  

The pectin derivatives (carboxylate esters) with different acyl chain lengths and extent of 

modification were prepared via reaction of pectin hydroxyl groups and di-acyl chlorides 

(Scheme 1) [19]. Since the reactivity of OH at C2 and C3 atoms in nonaqueous mediums was 

found to be approximately similar, the ester bond could be formed via one or another OH 

group with the same probability [20].  The pectin derivatives were named as G or S, 

depending on the type of acylating agent (G - glutaryl chloride; S- sebacoyl chloride), and 

numbered as 1/3 or 1/15 accordingly to the molar ratio between acylating agent and 

galacturonic acid unit. The proposed esterification mechanism with two possible reaction 

patterns is presented in Figure 1.  

 

Figure 1 

 

3.2 FTIR analysis 

The FT-IR spectra of pectin modifications (G1/3, G1/15, S1/3 and S1/15) are shown in Figure 

2. A spectrum of neat pectin is reported on each plot for comparison.  

 

Figure 2 

 

The neat pectin spectrum showed a broad band around 3400 cm
-1 

deriving from OH stretching 

vibrational modes  due to inter- and intramolecular hydrogen bonding of galacturonic acid. A 

presence of moderately intense bands in the range of 2830-2995 cm
-1

 was ascribed to C-H 

stretching vibrations. Strong absorption bands at approximately 1746 cm
-1 

were attributed to 

stretching of C=O groups from non-ionized carboxylic acid (methylated or protonated). Its 

ionization led to their disappearance and caused the appearance of stretch modes of COO
-
 in 

the range of 1616-1650 cm
-1 

and 1438-1443cm
-1

. Bands at 1357 cm
-1 

and 1228 cm
-1 

corresponded to -CH2 wagging vibrations, while bands at 1368 cm
-1 

and 920 cm
-1 

corresponded to -CH3 scissoring and rocking vibration of methyl ester groups, respectively 

[21]. Strong bands at 1146 cm
-1

 and 1105 cm
-1 

were indicative for stretching vibrations of 

ether R-O-R and cyclic C-C bonds in a ring structure of pectin molecules. The band at 830 

cm
−1

 related to the out of the plane deformation of COOH groups [22]. 

Going downfield, the first change in spectra of modified samples when compared with neat 

pectin spectrum was evidenced by a pronounced decrease in peak intensity ascribed to OH 

stretching vibrations (3400 cm
-1

). Since the OH groups located at C-2 and C-3 atoms of 
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galacturonic acid were targeted as esterification centres, the above could be correlated with 

exhaustion of these groups throughout the modification process. Also, it could be closely 

related to restricted hydrogen interactions due to more hydrophobic nature of the 

modifications [23]. The appearance of discrete peak indicative for aliphatic C-H stretching 

modes at 2995 cm
-1

 could be reasonably explained by insertion of - (CH2)n segments into a 

pectin backbone. An increase in ratio of peak area at 1746 cm
-1

 over sum of peak areas at 

1746 and 1620 cm
-1

, indicated formation of additional ester bonds between pectin hydroxyl 

groups and acyl group originating from esterification agents. An opposite trend, i.e. a decrease 

in the ratio, is observed in spectra of alkylated pectins, which were obtained in reaction 

between alkyl halides and carboxylic groups of pectin targeted as esterification centres. The 

above was explained by a translation of protonated carboxylic group to carboxylic anion, as a 

result of modification procedure [24]. Taking this into account, the results presented in Figure 

2 could be interpreted as follows: a decrease in relative area, attributed to COO
- 
vibration 

linkages, suggested that carboxylic groups of acylated derivatives mainly exist in 

their protonated form. This is more pronounced for the samples with higher acylation degree 

(G1/3, S1/3).  
 

3.3 GPC  

The GPC analysis was performed to determine the molecular weight distribution of modified 

pectin.  Pectin molecule was found to be very prone to degradation under aggressive chemical 

agents, leading  to a decrease in pectin molecular weight and loss of pectin functionality [25].  

Figure 3 

No significant differences in retention volume between the samples of neat and modified 

pectins were found, indicating no changes in molecular weight patterns as well as a lack of 

degradation during modification (Figure 3). 

3.4 Viscosity  

The amphiphilic systems exhibit original rheological properties in aqueous solution, which 

are mainly governed by inter- and intramolecular associations in specific system [26]. The 

behavior of the neat pectin and resulting derivatives in aqueous solution (4% w/v) was 

investigated and presented in Figure 4. 

 

Figure 4 

Within the range of investigated shear rates, all the modified pectin solutions showed a 

decrease in apparent viscosity when compared to the neat pectin. In the series where every 

third galacturonic unit of pectin chain was subjected to acylation, viscosity of corresponding 

solutions decreased in the following order:  neat pectin>S1/3>G1/3 (Figure 4a).  The same 

decreasing tendency was found for the samples modified with lower concentrations of 

acylating agent (S1/15, G1/15, Figure 4b). 
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Since GPC analysis indicated that degradation did not occur, the described rheological 

behaviour could be explained by more heterogeneous organization within modified pectin 

solutions (microparticles together with sticky polymer entanglement) [27]. 

 Interestingly, under a low share rates (0.1 - 0.3 s
-1

), the G1/3 and G1/15 solutions behave in a 

similar way, but different with respect to S1/3 and S1/15. A sharp viscosity drop observed in 

this range could be correlated with breakdown of the specific hydrogen-bonded structures, 

formed probably due to favoured hydrogen interactions in these systems [28]. This 

phenomenon, affected by derivative structures, will be discussed in more detail in the next 

sections.  

 

3.5 Particle size distribution and Optical microscopy  

Interactions with water are essential for the physical stability of pectin and its application 

[29]. Different aspects of pectin/water interactions can be tested by a wide variety of 

analytical methods. Particle size distribution in specific solvent is a useful approach to obtain 

deeper insight into molecular interactions in investigated systems. Figure 5 shows particle size 

distribution of diluted solutions of neat and modified pectin.  

Figure 5 

The solution of neat pectin had a very broad distribution wherein the particles were ranging 

from 0.26 to 214 μm in size (Figure 5a). Particle size with cumulative distribution of 50% is 

known as medium particles diameter (dV, 0.5)[30]. According to the calculated statistical data, 

the diluted pectin solution had dV, 0.5 with 50% of the particles under 11.04 μm. The particles 

in smaller size range (0-1.21 μm) occupied less than 10% w/v, while 90% w/v was occupied 

by particles smaller than 81.17 μm.  When compare to neat pectin, particle size distribution 

was found to be narrower and shifted towards lower size ranges for G1/3 and G1/15 (Figure 

5b). Interestingly, the size ranges obtained for diluted solution of S1/3 and S1/15 were 

translated to higher size values (Figure 5c). The values are summarized in Table 1.  

Table 1  

For better understanding of the results, it is necessary to consider all inter- and intramolecular 

interactions that may be possibly formed in given colloidally dispersed systems. According to 

the structures of neat pectin and acylated derivatives (Figure 1), particle size distribution 

could be dictated by following phenomena:  electrostatic repulsion forces due to high content 

of ionisable COOH groups; hydrogen bonding; hydrophobic attractive interactions caused by 

insertion of - (CH2)n segments into pectin backbone; and/or cross-links possibly formed by 

bridging of pectin chains . As polyelectrolyte, pectin is very prone to an influence of pH. At 

pH < 3.5 (below the pKa), free carboxyl groups are mainly undissociated, while at pH > 4.5 

(above pKa) they are mainly dissociated [31]. Dissociated carboxyl groups at higher pH are 

negatively charged and cause electrostatic repulsion of the macromolecules. The obtained 

acidic pH of 3.0 suppressed carboxylic groups ionization, so charge–charge repulsions were 

negligible for the investigated system.  
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In the neat pectin molecule structure, hydrogen bonds may be established between free 

carboxyl groups or hydroxyl groups of neighbouring molecules, while hydrophobic 

interactions mainly occur between methyl esters. The evidenced changes in particle size 

distribution clearly indicate that considered interactions were perturbed due to chemical 

modification. As previously stated, size ranges obtained for S1/3 and S1/15 solutions, were 

shifted to higher values due to coalescence of the particles and intensified hydrophobic 

interaction caused by insertion of di-acyl residues. Interestingly, this trend was more 

pronounced for the S1/15. Since di-acyl residues from sebacoyl chloride were found to be 

long enough to bridge chains of pectin molecule, this behaviour could be explained by 

formation of bi-grafted structures (chemical gels) with reduced swelling ability. The size 

ranges for G1/3 and G1/15 were found to follow the opposite distribution.  The observed 

decrease in particles’ diameter could indicate formation of mono-grafted structures of G1/3 

and G1/15 derivatives. The presence of isolated chains with additional terminal carboxyl 

groups in these structures may hinder hydrophobic interactions and cause predomination of 

the hydrogen bonding. Presumably, carbon chain length of gutaryl chloride was insufficient to 

forefront hydrophobic effect as well as to bind together pectin chains. At low pH, an internal 

distribution of carboxylic groups within polymeric backbone becomes dominant and dictates 

an intensity of hydrogen interactions and therefore, properties of a solute. Stabilized by 

intramolecular hydrogen bonds, the particles did not show a tendency towards coalescence, 

hence the size distribution is more uniform [32]. The evidenced distributions are visualized by 

means of optical microscopy and resulting images are presented in Figure 6. 

Figure 6 

 

3.6 TGA 

 

Figure 7a, b shows the TGA/DTG curves of neat and modified pectin samples.  

Figure 7 

Analysing the curves, two pronounced mass loss steps can be distinguished: the first, from 

ambient temperature up to 180 °C, and the second between 180°C and 600°C. The first 

degradation step was related to water loss [23]. It has been reported that there are three kinds 

of absorbed water in hydrophilic polymers: free, freezing bound and non-freezing water or 

bound water [33, 34]. Free water has the same phase transition temperature as bulk water and 

crystallizes at 0°C. Freezable bound water crystallizes below 0C due to weak Van DerWaals 

interactions between polymeric chains and water molecules. Non-freezable bound water does 

not crystallize even when swollen sample is cooled down to −100°C because of strong 

physical interactions between polar moieties of hydrophilic polymers and hydroxyl groups of 

water molecules via hydrogen bonds [35]. Neat pectin degradation curve exhibit intense water 

evaporation step up to 100 °C, while the modified samples showed different thermal pattern 

of continuous mass loss in a temperature range of 30-180°C. The differences in water loss for 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

10 
 

neat and modified pectin (Figure 7 a, b) may indicate that the proposed modifications affected 

water-pectin interaction. It can be assumed that a presence of hydrophobic domains in 

modified samples reduced a quantity of unbound water in the same storage conditions as for 

pure pectin. The second stage of mass loss was attributed to pectin degradation in the 

temperature range of 180–600°C. It was previously reported that degradation of about 60% of 

mass loss primarily derived from pyrolytic decomposition [23]. It consists of primary and 

secondary decarboxylation involving acid side groups and carbon in the ring. The most 

intense degradation step in a temperature range of 180-285°C (reaching maximum at 230°C) 

could be observed for both, i.e. neat and modified samples. Moreover, degradation of 

modified samples started at slightly lower temperatures when compared to neat pectin.  This 

can be attributed to higher number of ester bonds in pectin derivatives resulting from pectin 

modification  [36].  

3.7 DSC 

Glass transition (Tg) temperatures of neat and modified pectin samples are reported in Table 

2. The data were collected from the second heating. A glass transition temperature (Tg) is a 

complex phenomenon which is dependent on many factors including intermolecular 

interactions, molecular weight, chain flexibility, branching and/or cross-linking density [37]. 

The results summarized in Table 2 indicated that structural changes caused by modification 

affected Tg values. When compared to neat pectin, all modified samples showed lower Tg 

values. Differences in Tg were more pronounced for formulations where every third 

galacturonic unit of pectin chain was acylated (G1/3, S1/3), while in case of G1/15 and S1/15 

they were negligible. This is probably due to an increase in free volume caused by insertion of 

di-acyl residues into a pectin backbone. Generally, the more free volume, the lower Tg values 

[38]. 

Table 2 

3. 8 Surface properties  

The hydrophobicity of pectin modifications was interpreted in terms of their surface 

properties, obtained by applying two different measurement approaches.  Firstly, the surface 

properties were determined by dynamic contact angle measurement, as presented in Figure 8. 

It is well-known [39] that the water contact angle will increase with increasing surface 

hydrophobicity. The presented results (Figure 8) revealed that for the proposed modification 

water contact angle values increased in the following order: neat 

pectin<G1/15<G1/3≈S1/15<S1/3. Presumably, loss in free hydroxyl groups and insertion of 

hydrophobic domains into a pectin backbone resulted in decreasing hydrophilicity of modified 

samples [40]. Moreover, it was also proved that surface properties were affected by both 

acylation degree and length of inserted carbon chains. 

 

Figure 8 
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When measured by the ring method (Table 2), the surface tensions increased in following 

order: S1/3<S1/15<Neat pectin<G1/15<G1/3. As a consequence of intensified hydrophobic 

interaction caused by a presence of sebacyl residue (C10), surface tensions of S1/3 and S1/15 

solutions decreased as expected. On the contrary, surface tensions of G1/3 and G1/15 

solutions increased when compared to neat pectin solution. This can be correlated with the 

assumed mono-grafted structure of G1/3 and G1/15 derivatives (Figure 1a). An increasing 

number of carboxylic groups, distributed along polymeric chains in aqueous environment, 

favoured hydrogen interactions causing an increase in surface tension [29]. Interestingly, the 

surface tension trend is turned to be inconsistent when different approaches were used.   

 

3.9 SEM 

Micrographs of cryogenically fractured cross-sections of freeze dried 4% w/v solutions of 

neat pectin and G1/3, G1/15, S1/3 and S1/15 modifications, are presented in Figure 9.  

A sponge-like inner structure, rich in voids and wrinkles, was formed for all investigated 

samples probably due to migration of water molecules [41]. However, a comparative analysis 

of the presented morphologies evidenced some differences for modified samples. When 

compared to neat pectin, the microstructures of pectin modifications were stiffer and more 

wrinkled. This may be correlated with polymer-water interactions which had been affected by 

insertion of hydrophobic segments into highly hydrophilic pectin backbone. The modification 

with higher acylation degree, i.e. G1/3 and S1/3 (Figure 9 a, c), resulted in a microstructure 

with more compact arrangement and less prominent voids in comparison with G1/15 and 

S1/15 samples (Figure 9 b, d), probably due to poorer interaction with polar solvent.  

 

Figure 9 

 

4. Conclusions 

 

Pectin was hydrophobically modified by covalent attachment of acyl chains of various lengths 

(C4, C10) at different degrees of acylation. The acylation involved possible formation of 

mono-grafted (isolated chains) or bi-grafted (chemical gels) derivatives structure. The 

modified samples showed interesting behavior in aqueous solutions useful for controlling 

rheological properties. Depending on the derivative structure, the water-polymer interactions 

were preferentially governed by one of the following phenomena: hydrogen bonding, 

hydrophobic attractive interactions, and/or cross-linking. The acylation affected thermal 

properties of neat pectin, which was confirmed from TGA and DSC analyses. Hydrophobic 

nature of the derivatives was determined both on the surface of solid the films and in the 

aqueous environment. The obtained results revealed a certain discrepancy when applying two 
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methods of measurement, which was correlated by predomination of the specific interactions 

with respect to aqueous and non-aqueous environment.  

In summary, the reported study represents a step toward overcoming limitations imposed by 

the hydrophilic nature of native pectin. The detailed evaluation of new-created functional 

properties of obtained derivatives provides the starting line for better control and fine-tuning 

of its properties with respect to the possible application (emulsifying agents, matrices for food 

packaging films, microparticulate and polysoap systems).  
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[21] A. Synytsya, J. Čopıḱová, P. Matějka, V. Machovič, Fourier transform Raman and 

infrared spectroscopy of pectins, Carbohydrate Polymers 54(1) (2003) 97-106. 

[22] M. Černá, A.S. Barros, A. Nunes, S.l.M. Rocha, I. Delgadillo, J. Čopıḱová, M.A. 
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Figure captions  

Figure 1.  Esterification mechanism (m=3 or 8) 

Figure 2. FT-IR spectra of neat and modified pectin (lower part) with calculated areas of 

carbonyl region peaks (upper part): a) G1/3 and G1/15; b) S1/3 and S1/15. 

Figure 3. Chromatograms of neat and modified pectins 

Figure 4. Apparent viscosities of neat and modified pectin solutions a) G1/3 and S1/3; b) 

G1/15 and S1/15 

Figure 5. Particle size distribution of diluted solution a) neat pectin; b) G1/3, G1/15;  c) S1/3, 

S1/15 

Figure 6. The visual display of diluted solution of neat and modified pectin a) G1/3; b) G1/15; 

c) S1/3; d) S1/15 

Figure 7. Thermal degradation curves of neat and modified pectins, in a form of weight loss 

versus temperature curves (TGA) (a), and their derivatives (DTG) (b) 

Figure 8. Contact angle measurements in a given time conducted with water drop on film 

surface 

Figure 9. SEM micrographs of fractured cross-sections of freeze-dried solution (4% w/v) of  

neat and modified pectin a) G1/3; b) G1/15; c) S1/3; d) S1/15. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9  
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Table 1. Particle size diameters  

Sample ID dV,0.1 dV, 0.5 dV, 0.9 

Pectin 1.21 11.04 81.17 

G1/3 0.98 4.57 59.70 

G1/15 1.10 7.22 55.59 

S1/3 2.95 41.82 185.75 

S1/15 5.63 69.90 247.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

27 
 

Table 2. The glass transition (Tg) temperatures and surface tension values of 0.5% w/v 

solutions (du Nouy ring method) of neat and modified pectin  

Sample Tg, °C Surface tension, 

mN/m 

Pectin 131 48.3                      

G1/3 94.65 51.7                       

G1/15 118.26 50.0                         

S1/3 94.20 45.3                     

S1/15 121.04 46.0                         
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Graphical abstract 
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Highlights 

 

 Pectin was modified by reacting with glutaryl and sebacoyl chloride. 

 The acylation enhanced the hydrophobic nature of the pectin molecule. 

  Hydrophobic character was affected by acylation degree and acyl chain length.  

 Modification offered improvement in functionality of neat pectin.  
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